

Lecture Notes in Computer Science 5022
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Anu G. Bourgeois S. Q. Zheng (Eds.)

Algorithms
and Architectures
for Parallel Processing

8th International Conference, ICA3PP 2008
Cyprus, June 9–11, 2008
Proceedings

13

Volume Editors

Anu G. Bourgeois
Georgia State University, Atlanta, GA 30303, USA
E-mail: anu@cs.gsu.edu

S. Q. Zheng
University of Texas at Dallas, Richardson, TX 75080, USA
E-mail: sizheng@utdallas.edu

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D, F.1-3, C, I.6

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-69500-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69500-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12323395 06/3180 5 4 3 2 1 0

Preface

Welcome to the proceedings of the 8th International Conference on Algorithms
and Architectures for Parallel Processing (ICA3PP 2008).

ICA3PP 2008 consist of two keynote addresses, seven technical sessions,
and one tutorial. Included in these proceedings are papers whose authors are
from Australia, Brazil, Canada, China, Cyprus, France, India, Iran, Israel, Italy,
Japan, Korea, Germany, Greece, Mexico, Poland, Portugal, Romania, Spain,
Switzerland, Taiwan, Tunisia, UAE, UK, and USA. Each paper was rigorously
reviewed by at least three Program Committee members and/or external review-
ers, and the acceptance ratio is 35%. These papers were presented over seven
technical sessions. Based on the paper review results, three papers were selected
as the best papers.

We would like to thank the many people who helped make this conference
a successful event. We thank all authors who submitted their work to ICA3PP
2008, and all Program Committee members and additional reviewers for their
diligent work in the paper review process ensuring a collection of high-quality
papers. We are grateful to Hong Shen University of Adelaide, Australia and
Kleanthis Psarris University of Texas at San Antonio, United States, for their
willingness to be the keynote speakers. Our thanks go to Hai Jin and George
Papapodoulos, the conference General Co-chairs, and Andrzej Goscinski, Wan-
lei Zhou and Yi Pan, the conference Steering Committee Co-chairs for help in
many aspects of organizing this conference. Finally, we thank all the conference
participants for traveling to Cyprus. Without your participation, this conference
would not have been a success. We hope you find the proceedings of ICA3PP
2008 enjoyable and stimulating.

Anu Bourgeois
S.Q. Zheng

Conference Organization

General Chairs

Hai Jin, Huazhong University of Science and Technology, China
George A. Papadopoulos, University of Cyprus, Cyprus

Steering Committee Chairs

Andrzej Goscinski, Deakin University, Australia
Yi Pan, Georgia State University, USA
Wanlei Zhou, Deakin University, Australia

Program Chairs

Anu G. Bourgeois, Georgia State University, USA
S.Q. Zheng, University of Texas at Dallas, USA

Organizing Chair

George A. Papadopoulos, University of Cyprus, Cyprus

Organizing Committee

Pyrros Bratskas, University of Cyprus, Cyprus
Pericles Cheng, University of Cyprus, Cyprus
Constantinos Kakousis, University of Cyprus, Cyprus
Nearchos Paspallis, University of Cyprus, Cyprus

ICA3PP Program Committee

Jemal Abbawajy Deakin University, Australia
Selim Akl Queen’s University, Canada
Joseph Arul Fu Jen Catholic University, Taiwan
Mark Baker The University of Reading, UK
Amnon Barak Hebrew University of Jerusalem, Israel
Maarten Boasson University of Amsterdam, The Netherlands
Arndt Bode Technical University of Munich, Germany
Xiaojun Cao Georgia State University, USA
Jiannong Cao Hong Kong Polytechnic University, Hong Kong

VIII Organization

Peter Cappello University of California, Santa Barbara, USA
Jianer Chen Texas A&M University, USA
Yingying Chen Rutgers University, USA
Francis Chin University of Hong Kong, Hong Kong
Kenneth Chiu State University of NY at Binghamton, USA
Jose Cunha New University of Lisbon, Portugal
Alfredo Cuzzocrea University of Calabria, Italy
Erik D’Hollander Ghent University, Belgium
Eliezer Dekel IBM Haifa Research Laboratory, Israel
Robert Dew Deakin University, Australia
Marios Dikaiakos University of Cyprus, Cyprus
Jack Dongarra University of Tennessee, USA
José A. Fernández-Zepeda CICESE, Mexico
Len Freeman University of Manchester, UK
Chryssis Georgiou University of Cyprus, Cyprus
Ching-Hsien Hsu Chung Hua University, Taiwan
Zvi Kedem New York University, USA
Ken Hawick Massey University, New Zealand
Michael Hobbs Deakin University, Australia
Bo Hong Drexel University, USA
Susumu Horiguchi Tohoku University, Japan
Shi-Jinn Horng National Taiwan University of Science and

Technology, Taiwan
Ali Hurson Pennsylvania State University, USA
Weijia Jia City University of Hong Kong, Hong Kong
Hong Jiang University of Nebraska at Lincoln, USA
Krishna Kavi The University of North Texas, USA
Ashwin Gumaste Indian Institute of Technology, Bombay, India
Teofilo Gonzalez University of California, Santa Babara, USA
Wayne Kelly Queensland University of Technology, Australia
Tohru Kikuno Osaka University, Japan
Jacek Kitowski AGH University of Science and Technology,

Cracow, Poland
Michael Langston University of Tennessee, USA
Laurent Lefevre INRIA, France
Kuan-Ching Li Providence University, Taiwan
Keqin Li State University of NY at New Paltz, USA
Cho-Chin Lin National Ilan University, Taiwan
Thanasis Loukopoulos University of Thessaly, Greece
Praveen Madiraju Marquette University, USA
Christine Morin IRISA/INRIA, France
Koji Nakano Hiroshima University, Japan
Michael Palis Rutgers University, USA
Marcin Paprzycki SWPS and IBS PAN, Poland
Weizhong Qiang Huazhong U. of Science and Technology, China
Rajeev Raje Purdue University, USA

Organization IX

Michel Raynal IRISA, France
Justin Rough Deakin University, Australia
Barry Rountree University of Georgia, USA
Srinivas Sampalli Dalhousie University, Canada
Eunice Santos Virginia Tech. University, USA
Yiannakis Sazeides University of Cyprus, Cyprus
Edwin Sha University of Texas at Dallas, USA
Chengzheng Sun Nanyang Technological University, Singapore
Rajshekhar Sunderraman Georgia State University, USA
Yong-Meng Teo National University of Singapore, Singapore
Gabor Terstyanszki University of Westminster, UK
Jerry Trahan Louisiana State University, USA
Ramachandran

Vaidyanathan Louisiana State University, USA
Vassos Vassiliou University of Cyprus, Cyprus
Jianping Wang City University of Hong Kong, Hong Kong
Greg Wickham GrangeNet, Australia
Yue Wu University of Electronic Science and Technology,

China
Jie Wu Florida Atlantic University, USA
Roman Wyrzykowski Czestochowa University of Technology, Poland
Dong Xiang Tsinghua University, China
Chengzhong Xu Wayne State University, USA
Laurence T. Yang St. Francis Xavier University, Canada
Chao-Tung Yang Tunghai University, Taiwan
Albert Zomaya University of Sydney, Australia
Jun Zou Chinese University of Hong Kong, China

External Reviewers

Waleed Alsalih
Sriram Chellapan
YJing Chen
Kevin Chen
Eunjung Cho
John Eblen
Harald Gjermundrod
Lily Jia
Asterios Katsifodimos
Tao Li
Kai Lin
Fei Liu
Naya Nagy

Marius Nagy
Sudhir Naswa
Yinfei Pan
Jin Park
Andy Perkins
Charles Phillips
Gary Rogers
Chaman Sabharwal
Jiro Sumitomo
Daniel Tauritz
Theocharis Theocharides
Marco Valero
Navin Viswanath

Table of Contents

Smart Content Delivery on the Internet . 1
Hong Shen

Parallel Query Processing in Databases on Multicore Architectures 2
Ralph Acker, Christian Roth, and Rudolf Bayer

Evaluation of a Novel Load-Balancing Algorithm with Variable
Granularity . 14

Yi Dai and Lei Cao

A Static Multiprocessor Scheduling Algorithm for Arbitrary Directed
Task Graphs in Uncertain Environments . 18

Jun Yang, Xiaochuan Ma, Chaohuan Hou, and Zheng Yao

An ACO Inspired Strategy to Improve Jobs Scheduling in a Grid
Environment . 30

Marilena Bandieramonte, Antonella Di Stefano, and
Giovanni Morana

Architecture Aware Partitioning Algorithms . 42
Irene Moulitsas and George Karypis

A Simple and Efficient Fault-Tolerant Adaptive Routing Algorithm for
Meshes . 54

Arash Shamaei, Abbas Nayebi, and Hamid Sarbazi-Azad

Deadlock-Free Adaptive Routing in 2D Tori with a New Turn Model . . . 58
Dong Xiang, Qi Wang, and Yi Pan

Neighbourhood Broadcasting and Broadcasting on the (n, k)-Star
Graph . 70

L. He, K. Qiu, and Z.Z. Shen

Fault Tolerance in the Biswapped Network . 79
Wenhong Wei and Wenjun Xiao

3D Block-Based Medial Axis Transform and Chessboard Distance
Transform on the CREW PRAM . 83

Shih-Ying Lin, Shi-Jinn Horng, Tzong-Wann Kao,
Chin-Shyurng Fahn, Pingzhi Fan, Cheng-Ling Lee, and
Anu Bourgeois

A General Approach to Predict the Performance Order of TSP Family
Problems . 97

P. Fritzsche, D. Rexachs, and E. Luque

XII Table of Contents

Examining the Feasibility of Reconfigurable Models for Molecular
Dynamics Simulation . 109

Eunjung Cho, Anu G. Bourgeois, and José Alberto Fernández-Zepeda

Parallel Simulated Annealing for Materialized View Selection in Data
Warehousing Environments . 121

Roozbeh Derakhshan, Bela Stantic, Othmar Korn, and Frank Dehne

An Operational Approach to Validate the Path of BGP 133
Ping Li, Wanlei Zhou, and Ke Li

1-Persistent Collision-Free CSMA Protocols for Opportunistic Optical
Hyperchannels . 144

Jing Chen, Jianping Wang, Hui Yu, Ashwin Gumaste, and
S.Q. Zheng

An Optimization of Context Sharing for Self-adaptive Mobile
Applications . 157

Nearchos Paspallis and George A. Papadopoulos

A Network Service for DSP Multicomputers . 169
Juan A. Rico-Gallego, Jesús M. Álvarez-Llorente,
Juan C. Dı́az-Mart́ın, and Francisco J. Perogil-Duque

A Non-blocking Multithreaded Architecture with Support for
Speculative Threads . 173

Krishna Kavi, Wentong Li, and Ali Hurson

Finding Synchronization-Free Parallelism Represented with Trees of
Dependent Operations . 185

Wlodzimierz Bielecki, Anna Beletska, Marek Palkowski, and
Pierluigi San Pietro

Lee-TM: A Non-trivial Benchmark Suite for Transactional Memory 196
Mohammad Ansari, Christos Kotselidis, Ian Watson,
Chris Kirkham, Mikel Luján, and Kim Jarvis

Performance of OpenMP Benchmarks on Multicore Processors 208
Ami Marowka

Adaptive Loop Tiling for a Multi-cluster CMP . 220
Jisheng Zhao, Matthew Horsnell, Mikel Luján, Ian Rogers,
Chris Kirkham, and Ian Watson

Quasi-opportunistic Supercomputing in Grid Environments 233
Valentin Kravtsov, David Carmeli, Werner Dubitzky, Ariel Orda,
Assaf Schuster, Mark Silberstein, and Benny Yoshpa

Table of Contents XIII

Explicit Control of Service Execution to Support QoS-Based Grid
Scheduling . 245

Claudia Di Napoli and Maurizio Giordano

Parallelization and Distribution Strategies of Large Bioinformatics
Requests over the Grid . 257

Eddy Caron, Frédéric Desprez, and Gaël Le Mahec

Designing an Architecture for Distributed Shared Data on the Grid 261
Dacian Tudor, Vladimir Cretu, and Wolfgang Schreiner

Grinda: A Tuple Space Service for the Globus Toolkit 265
Sirio Capizzi and Antonio Messina

SuMo: A Framework for Prototyping Distributed and Mobile
Software . 269

Hervé Paulino

A Debugger for Parallel Haskell Dialects . 282
Alberto de la Encina, Ismael Rodŕıguez, and Fernando Rubio

Introducing Aspects to the Implementation of a Java Fork/Join
Framework . 294

Chrysoulis Zambas and Mikel Luján

Analyzing Software Component Graphs of Grid Middleware: Hint to
Performance Improvement . 305

Pingpeng Yuan, Hai Jin, Kang Deng, and Qingcha Chen

Using Multi-core to Support Security-Related Applications 316
Wanlei Zhou and Yang Xiang

Symbolic Analysis for Increased Program Execution Performance 318
Kleanthis Psarris

Author Index . 319

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, p. 1, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Smart Content Delivery on the Internet

Hong Shen

School of Computer Science
The University of Adelaide

Abstract. As the ever-growing Internet applications in the emerging e-society
are centered in sharing of various types of digital contents, content delivery on
the Internet as a hot topic has been attracting most attentions. Web caching is an
important technology for improving the efficiency of content delivery. As an
emerging technology en-route caching computes locations among caches on ac-
cess paths to store copies of an object such that specified objectives (such as
satisfying future access demands to the object) are achieved. In this talk, I will
first give an overview on recent developments in efficient content delivery. I
will then introduce our recent work in tackling this problem by applying the
technique of en-route caching, and present efficient solutions to the problem in
systems containing single server and multiple servers respectively. While the
problem is NP-hard in the general case, our solutions apply dynamic program-
ming technique and run in polynomial-time in the worst case for both uncon-
strained and constrained cases in the network topologies of trees (for broadcast
delivery) and linear arrays (for point-to-point delivery) respectively. They are
shown theoretically either optimal or convergent to optimal. Finally, I will
show some possible extensions of our solutions to other system settings.

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 2–13, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Parallel Query Processing in Databases on Multicore
Architectures

Ralph Acker1, Christian Roth1, and Rudolf Bayer2

1 Transaction Software, Willy-Brandt-Allee 2, D-81829 München, Germany
{Ralph.Acker, Christian.Roth}@transaction.de

2 Institut für Informatik, TU-München, Boltzmannstr. 3, D-85747 Garching, Germany
rdlf.bayer@informatik.tu-muenchen.de

http://www.transaction.de

Abstract. In this paper we present a novel and complete approach on how to
encapsulate parallelism for relational database query execution that strives for
maximum resource utilization for both CPU and disk activities. Its simple and
robust design is capable of modeling intra- and inter-operator parallelism for
one or more parallel queries in a most natural way. In addition, encapsulation
guarantees that the bulk of relational operators can remain unmodified, as long
as their implementation is thread-safe. We will show, that with this approach,
the problem of scheduling parallel tasks is generalized, so that it can be safely
entrusted to the underlying operating system (OS) without suffering any per-
formance penalties. On the contrary, relocation of all scheduling decisions from
the DBMS to the OS guarantees a centralized and therefore near-optimal re-
source allocation (depending on the OS’s abilities) for the complete system that
is hosting the database server as one of its tasks. Moreover, with this proposal,
query parallelization is fully transparent on the SQL interface of the database
system. Configuration of the system for effective parallel query execution can
be adjusted by the DB administrator by setting two descriptive tuning parame-
ters. A prototype implementation has been integrated into the Transbase®
relational DBMS engine.

Keywords: relational dbms, parallel query processing, encapsulation, intra-
operator, inter-operator, scheduling, optimization.

1 Introduction and Related Work

Computer architecture is currently shifting, making concepts formerly restricted to
supercomputers available on inexpensive server systems, desktop and laptop com-
puters. Hardware-parallelism, in form of multicore computing and RAID-controlled
access to secondary storage has apparently become the most promising cure for
stagnation in the constant longing for more computing power.

Based on this trend, it has become tempting to revisit the concepts of database par-
allelism in the light of those emerging hardware architectures, and of modern operat-
ing system characteristics that support this hardware.

 Parallel Query Processing in Databases on Multicore Architectures 3

Over the last two decades parallel query processing in database systems was the
topic of considerable research. Its outcome is now undoubtedly in daily use as part of
major commercial DBMSs. Most of the work was concentrated on shared nothing
(SN) architectures, e.g. the research prototypes Gamma [1] and Bubba [2]. Now it is
applied in modern grid and cluster computing. Other approaches focus on symmetric
multiprocessing architectures (SMP), such as XPRS [3] and Volcano [4], [5]. Exten-
sive additional efforts on scheduling parallel tasks have been made, e.g. [6], [7]. The
most recent work published in this field focuses on the special requirements of simul-
taneous multithreading (SMT), e.g. [8], and especially on the well-known problem of
stalls in the memory hierarchy [9].

However, the fundamental concepts of task identification and resource scheduling
were not revised recently to honor emerging technologies in modern SMP systems. Our
approach adopts the evident idea of encapsulating asynchronous relational query execu-
tion as an opaque relational operator. All implementation details are hidden within this
operator while its usage poses minimal requirements to other relational operators, allow-
ing them to remain unaffected. This idea of an asynchronous relational operator was
originally proposed in [10] and [4], but it appears that it never reached maturity. Our
parallel operator differs from the Volcano exchange operator, as it inherently supports
intra-operator parallelism and also addresses the problem of order preservation. Tan-
dem’s parallel operator is a commercial solution and no details were published, but
according to [4] it seems to be very similar to Volcano’s exchange operator.

We combine the encapsulation of parallelism with a two-phase query plan optimi-
zation. The first phase is common static optimization by the DMBS optimizer. The
optimizer drafts a plan on how a query should be carried out in parallel. The addi-
tional complexity of parallelization adds to the complexity of the NP-hard problem of
query plan optimization. We completely evade this complexity by using an approach
to query plan parallelization that is based on a minimal set of boundary conditions.
The second phase of optimization dynamically refines the query plan during the query
execution phase, rebalancing the threads of execution into an equilibrium that guaran-
tees maximum resource utilization. This in itself is also a common concept for maxi-
mizing parallelism on restricted resources. This form of two-phase optimization was
first applied to the problem of parallelism in database systems by [11]. The original
concept identifies (generates) tasks, and schedules them such that resources (I/O and
CPU) are optimally utilized. Therefore the tasks are categorized based on criteria such
as I/O or CPU boundedness, tuple size, tuples per page and estimated execution time.
These estimates can be inaccurate or vary over time, e.g. due to data skew. So re-
source utilization is constantly monitored and whenever it is not optimal rescheduling
is used. Our work diverges strongly from this approach in the aspect that we under-
stand parallelization as a concurrency problem. In our approach all tasks are strictly
data-driven, i.e. they are ‘runnable’ at any time, provided that input data is available.
They all apply for limited resources at the same time, while they are collaboratively
calculating the result of a relational query. There is no requirement to actively inter-
fere with the scheduling or prioritization of tasks, or to act on assumptions on these
tasks. Slow tasks are accelerated by assigning additional threads. Fast tasks will wait
on empty input buffers, consuming no resources at all. So permanent, automatic and
data-driven rebalancing of resources takes place, always striving to achieve optimal
resource allocation through concurrency.

4 R. Acker, C. Roth, and R. Bayer

To the best of our knowledge, this is the only work that covers both aspects of
general parallelization of relational queries, i.e. query plan optimization and load
balancing. It refers to the only implementation ready for integration into a relational
database system. Therefore this discussion of an asynchronous relational operator is
unique and complete.

2 Encapsulation of Parallelism

We model parallelization as a new operator (ASYNC) in the query execution plan
(QEP). Without loss of generality, we presume query plans consisting of operators
based on the well-known iterator model, i.e. each operator in the operator tree exposes
an open(), next(), and close() method to other operators, while all implementation
details are hidden within the operator. The ASYNC operator is an abstraction of
thread boundaries in the operator tree, i.e. data moving through an ASYNC node is
passed from one thread to another. An ASYNC node may be placed between any pair
of operators in a sequential QEP, i.e. on any edges of the operator tree, as long as it
has no side-effect compromising the functional integrity of the QEP. As an example
for such a side effect, imagine an ASYNC node allowing out-of-order execution be-
low a relational grouping operation. The GROUP operator relies on an input order on
the grouping field, which is arranged by a sequential QEP (SORT before GROUP in
Figure 1a). But in a parallelized QEP the ASYNC operator might disrupt the order
(Figure 1b).

Exchange of data (tuples) over thread boundaries is done via a buffer that is encap-
sulated and operated on by every ASYNC operator and thereby shared among the two
adjacent threads. Access to this buffer is synchronized, resembling the classic con-
sumer-producer problem. In order to minimize synchronization overhead, the buffer is
not locked for every tuple insertion/retrieval, but it is divided equally into three parti-
tions, which are used in a round-robin fashion. Consumer and producer need to be
synchronized only when they acquire access to a new partition. We chose partitioning
into three regions in order to allow one thread to switch partitions without necessarily
having to wait for the other thread. Thereby the first thread has the opportunity to
completely utilize its time slice rather than to give it up when its partition is ex-
hausted. A higher number of partitions would further improve this behavior, but it
would also induce additional synchronization operations for switching partitions.
Experimental results have confirmed that partitioning into three regions is optimal for
common database operations.

Calling the open() routine of the ASYNC operator assigns a new producer thread
that evaluates the QEP sub-tree below this ASYNC node. The new thread propagates
the open() call to its sons and afterwards asynchronously starts evaluating its sub-tree.
It retrieves all input data by calling next() and copying results into its current buffer
partition, until end-of-data is reached and the lock on the current buffer partition can
be released. Finally a call to close() frees all resources and terminates the thread. The
ASYNC nodes operate strictly in FIFO mode, so any ordering of the input data will
be retained.

 Parallel Query Processing in Databases on Multicore Architectures 5

T

aT .π

(a) (b)

aTgroup .

aTsort .

T

aT .π

aTgroup .

aTsort .

(c)

T

aT .π

aTgroup .

aTsort .

(d)

T

aT .π

aTgroup .

aTsort . aTsort .

sortasync

passasync

fifoasync

async

aT .π

passasync

Fig. 1. Different parallelized QEPs for the query SELECT T.a FROM T GROUP BY T.a. Dotted
lines represent thread boundaries. (a) Sequential plan (b) Example for ASYNC placement, (c)
Inter-operator parallelism and order preservation, (d) Intra-operator parallelism and sorting.

Using an ASYNC operator yields three valuable advantages. First, it is entirely
consistent with the recursive programming paradigm of the iterator model. Second,
existing operators do not need any modification, provided that they are thread-safe.
Third, ASYNC nodes can be placed (almost) freely in the QEP by the optimizer,
allowing for arbitrary forms of parallelization. An algorithm for parallelization will be
presented in Section 3.

Obviously, inter-operator parallelism can be easily modeled with this approach by
simply inserting ASYNC nodes into any given operator tree. In order to reduce the
costs for creating and terminating threads, the established concept of thread pooling is
used. The system maintains a pool of worker threads. Threads from this pool can be
assigned to all sorts of tasks. If the operation is completed, i.e. the ASYNC operator is
closed, the thread will return into the pool where it can be reused for another task.

Intra-operator parallelism is modeled by identifying pipeline fragments in the op-
erator tree that are suitable for parallel execution. These fragments are enclosed by
two ASYNC nodes, i.e. execution is to be carried out by three threads (e.g. Figure 1c).
Each of these fragments is logically replicated and its clone is executed in parallel as a
data pipeline (Figure 1d). At each thread boundary a partitioned buffer is installed.
The lower ASYNC node acts as data partitioner, i.e. it distributes its input data among
the pipelines’ input buffers, while the upper ASYNC merges the result from the dif-
ferent pipelines’ output buffers. Here special attention has to be paid to data ordering.
Partitioning and merging can be organized in two ways, reflected as two operating
modes of the involved ASYNC nodes. In pass-through mode (PASS) the pipeline is
adjusted for maximum throughput. Input data is written to any pipeline that currently
accepts more input and the upper ASYNC passes processed data on as soon as it
becomes available. So a pipeline in PASS mode is likely to process data in an
out-of-order fashion.

In some cases however, it is preferable to retain a given input order of the data, e.g.
if this order can be exploited by a consecutive operation. Therefore the pipeline may
also operate in FIFO mode, at the expense of losing some throughput (Figure 1c). In

6 R. Acker, C. Roth, and R. Bayer

this mode, data may also be inserted into any pipeline. But, as a meta information, a
partition is also marked with a sequential number that is also accessible for the upper
end of the pipeline. The upper ASYNC will then arrange its output along this se-
quence, thereby preserving the original order. Throughput is lost compared to the
PASS variant at the upper end of the pipeline, where the ASYNC potentially has to
wait for data with the next sequence number to become available. This might cause
the other pipelines to stall, because data is not retrieved fast enough. Another problem
of FIFO pipelining is that the amount of data is typically not constant in a pipeline, as
a pipeline might produce dramatically lesser (e.g. pipeline contains a restriction or
projection) or greater (e.g. pipeline contains a JOIN operator) amounts of data than
the input amount. For relational operators it is particularly hard to estimate how the
data size will change. This presents a profound problem in buffer space allocation for
FIFO pipelines. However, the problem is attenuated by roughly estimating changes in
data size where this is possible, e.g. for a projection eliminating one column. And it is
completely overcome by adding an additional flag of meta information into the pipe-
line buffers. This flag specifies whether all data from the source partition with the
current sequential number was retrieved, i.e. whether more data from a source parti-
tion has to be processed from this particular pipeline, or if the upper ASYNC can
move on to the next partition with the next sequence number. With this simple modi-
fication, one input partition of the pipeline may evolve to one, possibly empty, or
more output partitions of the same pipeline.

Finally, parallelizing SORT operations (Figure 1d) in a pipeline is a particularly at-
tractive feat. To achieve this, the lower end of the pipeline operates in PASS mode, as
any input order becomes irrelevant at the upcoming SORT operation in the pipeline.
The upper end operates in SORT mode, i.e. the ASYNC performs a heap-merge op-
eration with all input pipeline tuples. Thereby a SORT operation sorting n tuples can
be performed in m parallel pipelines with an estimated complexity of n/m*log(n/m)
for each pipeline, i.e. n*log(n/m) for m pipelines. The final heap merge has a com-
plexity of n*log(m), so the final linear complexity of the pipelined SORT operation
remains n*log(n), just like for the sequential operation.

It is also important to emphasize, that the static parallelization, as well as dynamic
load balancing discussed in the next sections, are not based on any assumptions or
statistics such as data sizes or distributions, estimations on operators such as number
of machine instructions per operation, number of I/Os or classification in CPU- or
I/O-bound query plan fragments. Statistics regularly tend to be compromised by data
skew and the constant activities of monitoring and refining their validity induces
unwanted additional computational costs.

3 Optimization for Parallel Execution

As proposed in many other approaches, we also adopt a two phase optimization. The
first phase performs static optimization and takes place during general query optimi-
zation. The DBMS SQL compiler and optimizer generate a QEP. This constitutes
what the DBMS considers an optimal plan for sequential processing. Afterwards, this
sequential plan is statically parallelized, i.e. the sequential execution plan is split up
into tasks that can be executed in parallel.

 Parallel Query Processing in Databases on Multicore Architectures 7

In order to reduce the complexity of this famous NP-hard problem of query plan
optimization, the query optimizer will generally consider only left-deep operator
trees. It is well understood [12] that these plans are not always optimal, especially for
parallel execution, where under certain circumstances (size of intermediate results,
available memory) bushy join trees may perform better, because joins are performed
in parallel. Considering all forms of operator trees is still an open research field and
will not be addressed in this paper. Without loss of generality, we assume in the fol-
lowing, that the result of the optimizer for a sequential query evaluation is also near-
optimal for parallel processing, while we emphasize the fact that our approach to
encapsulation of parallelism applies to arbitrary operator trees without restrictions.

3.1 Static Parallelization

Two configuration parameters are of importance in static parallelization. The first is
the total size of memory available per ASYNC operator (async_max_buffer). Every
ASYNC operator requires a buffer for inter-thread communication. If this buffer is
chosen too small, a lot of synchronization has to be performed when large amounts of
data are passed through it. If the buffer is too large, memory might be wasted. The
optimal size would allow a thread to process one partition of the buffer and release its
locks on it. Given the versatile forms of relational operators and their numerous com-
binations, this goal is very difficult to achieve. However, a buffer partition should be
at least big enough, that most threads cannot process it in a mere fraction of their time
slices. Thus synchronization and scheduling overhead is limited reasonably.

The second parameter is the maximum number of parallel pipeline fragments that
should be active at any time (async_max_threads). QEPs for complex statements tend
also to be complex, involving several thousands of operators. If such a plan is evalu-
ated sequentially, only one single operator is active and consuming CPU and/or I/O
resources at any point in time, and typically only operators in the immediate vicinity
are likely to demand massive memory allocation. Parallel query execution behaves
contrarily. Here it is actually desired to have many fractions of the tree running in
parallel, each fragment having one active operator consuming CPU and/or I/O and
each with potentially heavy memory requirements. Obviously some precautions, like
limiting the number of ASYNC operators, have to be taken in order to cope with this
problem.

Yet there exists a special class of relational operators, the so-called blocking opera-
tors. These operators have to process all input data before any output can be gener-
ated, e.g. SORT/ AGGR. They represent a rupture in the data flow, i.e. the plan below
and above such a blocking node will be executed mutually exclusively, even by a
parallel QEP. By identifying these blocking operators, the parallelizer can apply
maximum parallelism by inserting async_max_threads ASYNC nodes below and
above such a blocking node.

With these two configuration parameters, we can devise an algorithm for static
parallelization. Its task is to identify QEP fragments that can be split off for asynchro-
nous execution. To limit memory consumption, synchronization and communication
overhead, we choose to find QEP portions of maximum length, i.e. the number
of initial ASYNCs is minimized. We can rely on dynamic load balancing, which is
discussed below, to increase the number of ASYNCs for optimal parallelism.

8 R. Acker, C. Roth, and R. Bayer

Additionally an ASYNC is always placed at the root of the QEP (not shown in Figure
1) to ensure, that the server will work ahead on a bulky query result set, while the
database client is processing the last portion of the result. More ASYNCs are always
placed above any leaves of the QEP, i.e. data sources (relation or index accesses) that
are likely to perform I/O, so asynchronous I/O is maximized. Pipelines (intra-operator
parallelism) contain only unary operators. The subtrees of n-ary operators are split
into several threads by inserting ASYNCs below this operator, so n input streams are
calculated independently in n threads. The only exception to this rule is NL-JOIN
(nested-loop) operator, because of its strong functional dependency in looking up join
partners; it may reside in one pipeline as a whole.

The static parallelization is essentially a depth-first traversal of the initially sequen-
tial QEP. While moving down the QEP, we keep an account if the current operator (or
a parent operator) relies on the current data order, so we can later apply the optimal
mode to an ASYNC. When we reach a leaf of the QEP we insert the first ASYNC to
encourage asynchronous I/O. Then we retrace our steps upwards over any unary op-
erators. When we reach an n-ary operator (not NL-JOIN), we insert another ASYNC
node and thereby build a pipeline. Finally for these two associated ASYNCs the op-
eration mode is set to PASS/ FIFO or SORT (if the pipeline contains a sort operation).
A pipeline may be executed async_max_threads times in parallel and each ASYNC
may allocate as much as async_max_buffer memory for its buffer.

These are the basic steps of our algorithm to parallelize a sequential QEP. Obvi-
ously its complexity is determined by the complexity of the tree traversal O(n), and is
therefore linear with the number of operators in the QEP.

3.2 Dynamic Load Balancing

The second phase of optimization is carried out during query run-time. While one, or
possibly several, queries are executed in parallel, the system resources must be con-
stantly reallocated to ensure optimal utilization of CPU, memory and disk resources.
We distinguish three phases of query execution, each with its own special require-
ments to load balancing.

3.2.1 Phases of Query Execution
During the first phase, execution startup, all portions of operator trees (separated by
ASYNC nodes) are initiated and start computation one by one. As calculation is data-
driven, in this phase only the ‘leaf’-threads will run. All other threads are currently
waiting for input. This fact exhibits two important problems. The leaves of the opera-
tor trees are the data sources and typically involve mostly I/O, while the inner opera-
tor nodes of a tree are more biased towards CPU utilization. This brings about a heavy
load imbalance in the earliest phase of query execution.

In the second phase all parts of the operator tree are active. In this phase, if we
temporarily assume uniform data distribution, the tasks will automatically be rebal-
anced for maximum data throughput and optimal resource utilization. Data skew will
constantly disturb this balance, making permanent rebalancing necessary. In this
phase however, it is most likely to achieve the target of full resource utilization.

In the third stage, the leaf nodes are already exhausted. Now, all input data is avail-
able and stored in various buffers across all involved operators, and no more I/O is

 Parallel Query Processing in Databases on Multicore Architectures 9

necessary, balance shifts again for a massive CPU shortness. Thus, the second phase
has most potential to compensate for the incurred overhead of parallelization by
maximized resource utilization. Moreover, if this phase is too short, parallelization is
likely not to pay off. Particularly in the presence of simple and short-running queries
we will show in our experimental results, that this fact alone can already make
parallelization disadvantageous over sequential query execution without further
precautions.

We therefore propose a robust approach of gradually increasing parallelism using
retarded pipeline activation and dynamic buffer size. As in the first phase of query
execution only the leaf threads are running, there is no point in activating all pipe-
lines, as they would immediately block on their empty input buffers. In addition we
artificially limit the memory in the input buffers on our ASYNC buffers. Immediately
after startup only a small fraction of the buffer region is used. Therefore, a buffer
partition fills up relatively fast and a producer is forced to switch to the next partition.
The consumer is signaled that input data has become available and begins work much
earlier, i.e. the startup phase is shortened dramatically at the expense of some addi-
tional synchronization on the input buffers. When the producer has to wait on a full
input buffer (imbalanced consumer-producer relationship), it increases the fraction of
its buffer that it may use next time. This is repeated until either a balance between
producer and consumer is reached or the buffer is used completely. In the latter case,
if the buffer in question is at the lower end of a pipeline, one additional pipeline is
activated. In combination, these two simple techniques guarantee a very agile and
short query startup. They make sure that asynchronous execution of short-running
queries has only a negligible overhead compared to sequential query execution while
optimal balance between consumers and producers is established quickly.

In conclusion, data-driven load balancing as proposed here, is fully adaptive to all
forms of hardware configurations, i.e. it is not limited to any specific number of CPU
cores, particular memory hierarchies or disk configurations. On the contrary, it will
automatically scale to the system parameters it is confronted with. This is solely
achieved by its ability of finding the equilibrium of optimal data-flow and thereby
optimal resource allocation. This is done completely independent from the particular
hardware situation.

3.2.2 Asynchronous I/O System
In our approach, I/Os are issued against the centralized asynchronous I/O system of
the operating system. They are issued one at a time as the threads in the QEP move
along. Unlike other approaches where I/O is classified into sequential and random I/O
and the DBMS decides on I/O serialization, the decision which I/O request to serve
first is postponed to the operating system’s I/O system. This is where all information
for optimal global scheduling (physical I/O system layout, current position of head(s),
complete system wide I/O request queue, physical addresses of all I/Os in queue) is
available. This is particularly true, when several processes are competing for disk
resources. Our only requirement to the I/O system is fairness in scheduling, i.e. no
starvation and active I/O reordering. If the operating system would simply serve I/O
request in FIFO order, this would severely undermine all efforts for efficiency. These
requests are satisfied by all modern operating systems. As for task scheduling, priori-
tization of I/O requests is not a requirement. However, the DMBS could exploit a

10 R. Acker, C. Roth, and R. Bayer

second, lower priority. By constantly interspersing low priority write requests, it util-
izes an otherwise idle I/O system for writing ahead modified pages from the database
cache to disk. So these pages become replaceable at low costs [13].

Our results prove that this concept works well in most cases. But strict fairness in
scheduling I/O requests affects the performance of sequential I/O. If one thread, per-
forming sequential I/O, issues only one request at a time and another thread issues
additional, possibly random I/Os, the former sequential I/O is permanently disturbed
and becomes in fact random. This effect can be lessened, if both threads issue not
only one request at a time, but a set of read-ahead requests against the I/O system.
Then sequential requests are completed as batches without the overhead of position-
ing, resulting in near sequential I/O performance for sequential I/O while concurrent
random I/O requests are still reasonably served.

4 Experimental Results

In the following, we will present the experimental findings of our parallelization ap-
proach. All measurements were made on a 2 CPU Intel Xeon server running both
Linux 2.6.18 and Windows 2003 Server as operating systems. The results are equiva-
lent for both operating systems.

Overall performance gain is examined using a query mix of partially complex ad-
hoc queries that were extracted from a productive real-world data warehouse
application.

This query suite is consisting of a total of 387 retrieval queries. For this presenta-
tion the queries were sorted along ascending elapsed times for sequential execution.
In addition to the sequential time, the estimated optimal parallel query performance
for a two-CPU system (Sequential/2) is shown as a theoretical lower boundary for
parallel execution. A direct comparison to other RDBMS parallelization approaches is
too extensive to fit in the given space constraints.

The following two diagrams of Figure 2 intend to clarify the interaction of the
various components of our prototype. They do not show the full capabilities of our
approach, but exhibit the outcome if critical features are disabled.

On the left side of Figure 2 only inter-operator parallelism is used, i.e. the QEP is
parallelized as discussed but no pipelines are built. The first 219 are very short run-
ning queries (below 10 ms), with little or no potential for parallelization. Most of the
measured elapsed time here is actually spent for client-server communication, SQL
query compilation, and optimization. Query evaluation, although multithreaded,
induces only a minor fraction to overall calculation time. These queries represent over
50% of this query suite. Note, that the cumulated difference graph
(∑ −= =

n
i iin SeqParCumDiff 1 , referring to the secondary axis) stays close to zero,

meaning that parallelization has neither a positive, nor a negative impact for these
queries.

Approximately 100 (queries 220-318) are medium-runners (10 to 600 ms), where
parallelization is attempted. Most of them incur some minor overhead. The cumulated
difference graph is rising slowly to its peak at 10.772 seconds. This indicates that this
restricted parallelization is causing a performance penalty for medium-runners. Only

 Parallel Query Processing in Databases on Multicore Architectures 11

0,0

2,0

4,0

6,0

8,0

10,0

12,0

0 43 86 129 172 215 258 301 344 387
Query

E
la

p
se

d
Ti

m
e

[s
]

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

C
u

m
ul

at
ed

 D
if

fe
re

nc
e

Sequential (1 CPU)

Optimal (2 CPU)

No Intra-Op Parallelism

Cumulated Difference
(Overhead > 0, Speedup < 0)

0,0

2,0

4,0

6,0

8,0

10,0

12,0

0 43 86 129 172 215 258 301 344 387
Query

E
la

p
se

d
Ti

m
e

[s
]

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

C
u

m
ul

at
ed

 D
if

fe
re

nc
e

Sequential (1 CPU)

Optimal (2 CPU)

No Load Balancing

Cumulated Difference
(Overhead > 0, Speedup < 0)

Fig. 2. Performance of limited parallel query execution. Left side: Intra-Operator Parallelism
disabled. Right side: No load balancing. Queries are sorted by ascending sequential elapsed
times. Cumulated Difference always refers to the secondary Y-axis.

the long-runner queries (elapsed times over 600 ms) show potential for paralleliza-
tion. Here the cumulated difference falls monotonously below 0, i.e. this represents
the total speedup of 4.5%. Clearly inter-operator parallelism is not sufficient for
speeding up relational queries, because it offers no mechanism to eliminate perform-
ance bottlenecks. Only complex queries with extensive independent tasks can benefit.

The second measurement was carried out without load balancing. Data pipelines
are established and immediately activated. This measurement shows more distinct
peaks, depending on how near the fully parallel QEP happens to be to the optimally
balanced plan. Some queries are close to the optimal performance but in total the
cumulated difference peaks at 13,124 ms for medium runners. Again, this is compen-
sated by the long-runners leading to a total speedup of 6.9%.

Both results are not very satisfactory as the medium-runners in both cases account
for a perceptible overhead. In the next step we will examine the combination of all
discussed proposals. The left diagram in Figure 3 shows elapsed times of queries 1 to
318. The right diagram shows the remaining queries in a different scale. Once again
the short running queries are almost unaffected by parallelization. However, in this
scenario the medium-runners sometimes pay off and sometimes incur some minor
overhead. In total both effects almost eliminate each other, as the cumulated differ-
ence graph is rising only very slightly above zero, i.e. parallelization is causing a
negligible performance penalty for medium-runners. The cumulated difference rises
as high as 1.651 seconds, and is falling later on. It is adding up to an average penalty
of 10 ms per query for the medium runners. However, an integral examination shows
that the average overhead per medium-runner is only about 3%, which we consider
acceptable. Moreover, a total of 1.651 seconds of overhead seems negligible com-
pared to a cumulated runtime of 34.852 s for the short and medium-runners and a total
elapsed time of over 226.5 seconds for the compete query suite. The long-runner
queries (Figure 3, right hand side, elapsed times over 600 ms) consistently show good
potential for parallelization. In this phase the cumulated difference falls monotonously
far below 0. Clearly the performance of the parallel query execution is close to the
estimated optimum. Only few long-runners stay close to the sequential performance.
The reason for this would-be poor parallelization is that the involved relational opera-
tors in these queries are inherently barely parallelizable. Still, it is noteworthy that

12 R. Acker, C. Roth, and R. Bayer

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 53 106 159 212 265 318
Query

E
la

p
se

d
 T

im
e

[s
]

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

C
u

m
u

la
te

d
 D

if
fe

re
n

ce

Sequential (1 CPU)

Optimal (2 CPU)

Parallel

Cumulated Difference
(Overhead > 0, Speedup < 0)

0

1

2

3

4

5

6

7

8

9

10

319 336 353 370 387Query

E
la

p
se

d
 T

im
e

[s
]

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

C
u

m
u

la
te

d
 D

if
fe

re
n

ce

Fig. 3. Overall performance of parallel query execution. Left side: Short-runners (queries 1-219)
and medium-runners (220-318). Right side: Long-Runners (319-387). Queries are sorted by
ascending sequential elapsed times. Note the different scale on the primary Y-axis. Cumulated
Difference always refers to the secondary Y-axis.

parallel query execution never surpasses sequential performance and that those that
come close to sequential behaviour are very few.

In total, parallelization reduces the total elapsed time for the whole query suite
from 226.5 to 156 seconds, i.e. below 70 %. If only the long-runners are accounted
for, the ratio sinks even below 63%. Similar results where produced on several other
multicore machines without changing any parameters. This emphasizes our claim that
the ASYNC operator is adaptive and universally applicable, independently from any
particular hardware configuration.

5 Conclusion

We presented a complete evaluation of an approach to parallel relational query execu-
tion that is based on encapsulation of parallelism into the relational ASYNC operator.
This work includes an algorithm that is capable of efficiently parallelizing sequential
execution plans. Parallelization provided by this algorithm is sufficient to generate
query execution plans that reach maximum resource utilization during query execu-
tion. Continuously high resource utilization in the presence of data skew and varying
machine workloads is guaranteed by the robust and powerful dynamic load balancing
capabilities of the ASYNC operator. Measurements in a productive environment have
proven the capabilities and maturity of this concept and its implementation. They
confirm near-linear speedup for queries that are well-suited for parallelization and a
respectable average run-time reduction by over 30% for an extensive ad-hoc query
suite. On the other hand, our approach incurs no noteworthy performance loss for
queries that are adverse to parallelization, because they run too shortly or their rela-
tional calculus offers no possibility for parallelization.

Future work on the ASYNC operator will concentrate on further improving
interaction with an asynchronous I/O system. Another field is the extension of paral-
lelization of selected relational operators, such as GROUP and AGGR. Finally some
fine-tuning is planned to improve the cooperation of the ASYNC operator and the
main memory cache hierarchy, in order to reduce memory stalls in SMT environ-
ments by implementing aggressive data prefetch into the ASYNC node.

 Parallel Query Processing in Databases on Multicore Architectures 13

References

1. DeWitt, D.J., Ghandeharizadeh, S., Schneider, D.A., Bricker, A., Hsaio, H.I., Rasmussen,
R.: The gamma database machine project. IEEE Transactions on Knowledge and Data En-
gineering 2(1), 44–62 (1990)

2. Copeland, G., Alexander, W., Boughter, E., Keller, T.: Data Placement in Bubba. In: Pro-
ceedings of the 1988 ACM SIGMOD international conference on Management of data,
Chicago, Illinois, USA, June 01-03, pp. 99–108 (1988)

3. Stonebraker, M., Katz, R.H., Patterson, D.A., Ousterhout, J.K.: The Design of XPRS. In:
Proceedings of the 14th International Conference on Very Large Data Bases, August 29-
September 01, pp. 318–330 (1988)

4. Graefe, G.: Encapsulation of parallelism in the volcano query processing system. In:
SIGMOD 1990: Proceedings of the 1990 ACM SIGMOD international conference on
Management of data, pp. 102–111. ACM Press, New York (1990)

5. Graefe, G., Cole, R.L., Davison, D.L., McKenna, W.J., Wolniewicz, R.H.: Extensible
Query Optimization and Parallel Execution in Volcano. Morgan-Kaufman, San Mateo
(1994)

6. Lu, H., Tan, K.: Dynamic and load-balanced task-oriented database query processing in
parallel systems. In: Pirotte, A., Delobel, C., Gottlob, G. (eds.) EDBT 1992. LNCS,
vol. 580, pp. 357–372. Springer, Heidelberg (1992)

7. Mehta, M., DeWitt, D.J.: Managing intra-operator parallelism in parallel database systems.
In: VLDB 1995: Proceedings of the 21th International Conference on Very Large Data
Bases, pp. 382–394. Morgan Kaufmann Publishers Inc., San Francisco (1995)

8. Zhou, J., Cieslewicz, J., Ross, K.A., Shah, M.: Improving Database Performance on Si-
multaneous Multithreading Processors. In: Proc. VLDB Conference, pp. 49–60 (2005)

9. Ailamaki, A., DeWitt, D.J., Hill, M.D., Wood, D.A.: DBMSs on a modern processor:
Where does time go? The VLDB Journal, 266–277 (1999)

10. Englert, S., Gray, J., Kocher, R., Shah, P.: A Benchmark of NonStop SQL Release 2
Demonstrating Near-Linear Speedup and Scaleup on Large Databases, Tandem Computer
Systems Report (1989)

11. Hong, W., Stonebraker, M.: Optimization of parallel query execution plans in XPRS. In:
PDIS 1991: Proceedings of the first international conference on Parallel and distributed in-
formation systems, pp. 218–225. IEEE Computer Society Press, Los Alamitos (1991)

12. Hong, W.: Exploiting inter-operation parallelism in XPRS. In: SIGMOD 1992: Proceed-
ings of the 1992 ACM SIGMOD international conference on Management of data, pp. 19–
28. ACM Press, New York (1992)

13. Hall, C., Bonnet, P.: Getting Priorities Straight: Improving Linux Support for Database
I/O. In: Proc. VLDB Conference (2005)

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 14–17, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Evaluation of a Novel Load-Balancing Algorithm with
Variable Granularity

Yi Dai and Lei Cao

National University of Defense Technology, Changsha, Hunan, 410073, P.R. China
y_dai@163.com, dai_guacl@sina.com

Abstract. In this paper, we propose a Uniform Fine-grain Frame Spreading
(UFFS-k, where k is the aggregate factor) algorithm to guarantee packet order-
ing in load-balanced switches by assigning k cells of the same flow to the fixed
k successive intermediate inputs. The UFFS-k algorithm first guarantees packet
ordering at input linecards without any computation and communication over-
head. As the simulation results demonstrate, UFFS-k offers improved delay per-
formance among existing scheduling algorithms that guarantee packet ordering.

1 Introduction

Recently, there has been considerable interest in a class of switch architectures called
load-balanced routers. A problem with the load-balanced router is that different pack-
ets of the same flow can take different paths, possibly leading to packet reordering
[1]. Packet reordering is a widespread property among load-balanced systems and can
be detrimental to Internet traffic [2]. Consequently, packet reordering is strongly nec-
essary in Internet routers when packets become mis-sequennced. In this paper, we
introduce a novel Uniform Fine-grain Frame Spreading (UFFS-k) algorithm that
spreads arriving packets evenly among intermediate input linecards by constructing a
fixed mapping relationship between flows and intermediate input linecards in a round-
robin manner. By spreading cells in a fine-grained way, UFFS-k can offer improved
delay performance compared to existing approaches.

2 The UFFS-k Algorithm

The load-balanced switch architecture applied in the UFFS-k algorithm is shown in Fig.
1. The intermediate inputs1,2,...., N are divided into /N k groups in order, each containing
k consecutive intermediate inputs that constitute a region. For each input linecadrd, there
are k flows mapped to a fixed region, and these k flows constitute a flow branch. In order
to distribute traffic equally among the intermediate inputs, the fixed mapping relationship
between flow branches of different input ports and regions varies in a round-robin fash-
ion. In the load-balanced switch, reordering occurs when two OQs destined to the same
output in different intermediate inputs have different lengths. UFFS-k always assigns k
cells of the same flow to the fixed region according to the preset mapping relationship.
Due to this fixed mapping relationship, all the OQs of the same region destined to the
same output having the same length thus packet ordering being guaranteed.

 Evaluation of a Novel Load-Balancing Algorithm with Variable Granularity 15

1
1
1
N

OQ
OQ

1
k

k
N

OQ
OQ

1
1

1

N k

N k
N

OQ
OQ

1
N

N
N

OQ
OQ

1,1

1, N

VOQ

VOQ

,1

,

k

k N

VOQ

VOQ

1,1

1,

N k

N k N

VOQ

VOQ

,1

,

N

N N

VOQ

VOQ
N

1 1

N

Fig. 1. The load-balanced switch architecture. The intermediate inputs are divided into N/k
regions, and the VOQs at each input are also divided into N/k groups corresponding to N/k
regions.

As shown in Fig. 1, in order to reduce the memory bandwidth requirement the two
stages of meshes in the load-balanced router usually run at rate R/N. Then we have the
following definitions:

Definition 1. External Cell Slot: Refers to the time taken to transmit or receive a fixed
length cell at link rate of R .

Definition 2. Cell Slot: This is the time taken to transmit or receive a fixed length cell
at link rate of /R N .

According to the link constraints described in Ref. [3], each input is constrained to
send a cell to specific intermediate input at most once every N external time slots. If
input i starts sending a cell to intermediate input l at external time slot t, then the first
time it can again send a cell to intermediate input l again is at external time slot t+k.
So during each external cell slot, the UFFS-k algorithm at most selects a cell for
transmission. UFFS-k is distributed and can operate independently in each input.
UFFS-k services flow branches in a round-robin manner and dispatches cells accord-
ing to the mapping relationship between flow branches and regions. For each flow
branch, UFFS-k always sends k cells for the VOQ with the longest length during
consecutive k external cell slots. If the longest VOQ whose length less than k, the
UFFS-k algorithm will choose next flow branch to service.

3 Performance Simulation and Analysis

We modified SIM simulator developed by Stanford University to observe the per-
formance of UFFS-k[4]. In this section, we present the simulation results of a
16 16× UFFS-k for 8, 4,2,1k = and analyze the effect of different aggregate factor of

16 Y. Dai and L. Cao

UFFS-k on delay performance. We also compare the performance of UFFS-k, the
originally-proposed load-balanced switch with no packet ordering guarantees [5], the

full-ordered frame first (FOFF) algorithm[1] with a reordering buffer of 2N cells at
each output [1], and the UFS algorithm[1].

Fig. 2 shows the simulation results on average delay under Bernoulli_iid_uniform
traffic of UFFS-k, FOFF, UFS, and the basic load-balanced switch [5]. UFS has the
poorest average delay because of the need to accumulate full frames. By reducing
aggregate factor k, the performance of UFFS-k can be improved by a large margin.
For the FOFF algorithm, the large portion of cell delay still occurs in the cell-
reassembly operation at the output. UFFS-4 has lower average delay than FOFF
above 0.3 offered load and UFFS-2 clearly outperforms FOFF for all loads. UFFS-1
surprisingly performs better than the basic load-balanced switch for load 0.2ρ ≤ .

UFFS-1 sends each flow through a dedicated link to the intermediate input. This may
result in poor utilization of first stage mesh, but works well under uniform traffic
especially at light loads. That’s why UFFS-1 outperforms other UFFS-k algorithms of
k=2, 4, 8. We will show later UFFS-1 has poor performance under bursty traffic. The
performance of the basic load-balanced switch is better than UFFS-1 under heavy
load. However, unlike the basic load-balanced switch that can badly mis-sequence
packets, UFFS-k guarantees packet ordering.

Fig. 3 shows the simulation results for bursty traffic. The average delays of most al-
gorithms become unstable at 0.99 offered load. For smaller aggregate factor k, the re-
duction in delay is less. In an extreme case, take UFFS-1 for example, of which the
delay performance gets worse under heavy load and has the poorest performance at 0.99
offered load even compared with UFS. Due to spreading each flow via a dedicated link,
UFFS-1 cannot spread traffic evenly among intermediate inputs under bursty traffic.
Unfortunately, under bursty traffic, this uneven distribution of traffic gets worse as load
increases. Therefore, UFFS-1 has better performance under Bernoulli_iid_uniform

Fig. 2. Average delay under the uniform Bernoulli traffic model. Switch size is N = 16.

 Evaluation of a Novel Load-Balancing Algorithm with Variable Granularity 17

Fig. 3. Average delay under the bursty traffic model. Switch size is N = 16.

traffic but much poorer under bursty traffic. UFFS-4 has poorer performance than FOFF
for load 0.4ρ ≤ , but it outperforms FOFF at higher loads. UFFS-2 shows the best delay
performance among algorithms that guarantee packet ordering.

4 Conclusion

In this paper, we proposed the UFFS-k algorithm for performance guarantees in load-
balanced switch. We compare the performance of UFFS-k to existing scheduling
algorithms for load-balanced switches through simulation. The simulation results
demonstrate that generally the performance of UFFS-k is improved as aggregate fac-
tor decreases. UFFS-2 outperforms existing scheduling algorithms that guarantee
packet ordering. Furthermore, UFFS-2 shows close performance compared to the
basic load-balanced switch without packet ordering guarantees under bursty traffic
model so do UFFS-1 under uniform Bernoulli traffic model.

References

1. Keslassy, I.: The Load-Balanced Router, Ph.D. Thesis, Stanford University (2004)
2. Fomenkov, M., Keys, K., Moore, D., Claffy, K.: A longitudinal study of internet traffic

from 1998-2001: a view from 20 high performance sites. In: Proc. of WISICT 2004, Mexico
(2004)

3. Iyer, S., McKeown, N.: Analysis of the parallel packet switch architecture. IEEE/ACM
Transactions on Networking, 314–324 (2003)

4. Chang, C.S., Lee, D.S., Jou, Y.S.: Load balanced Birkhoff-von Neumann switches, Part I:
one-stage buffering. Computer Communications 25, 611–622 (2002)

5. http://klamath.stanford.edu/tools/SIM/

A Static Multiprocessor Scheduling Algorithm

for Arbitrary Directed Task Graphs in
Uncertain Environments

Jun Yang1,2,�, Xiaochuan Ma1,��, Chaohuan Hou1, and Zheng Yao3

1 Institute of Acoustics, Chinese Academy of Sciences
2 Graduate University, Chinese Academy of Sciences

3 Department of Electronic Engineering, Tsinghua University, China

Abstract. The objective of a static scheduling algorithm is to minimize
the overall execution time of the program, represented by a directed task
graph, by assigning the nodes to the processors. However, sometimes it
is very difficult to estimate the execution time of several parts of a pro-
gram and the communication delays under different circumstances. In
this paper, an uncertain intelligent scheduling algorithm based on an
expected value model and a genetic algorithm is presented to solve the
multiprocessor scheduling problem in which the computation time and
the communication time are given by stochastic variables. In simula-
tion examples, it shows that the algorithm performs better than other
algorithms in uncertain environments.

Keywords: scheduling, parallel processing, stochastic programming,
genetic algorithm.

1 Introduction

Given a program represented by directed acyclic graph (DAG), the objective of
a static scheduling algorithm is to minimize the overall execution time of the
program by properly assigning the nodes of the graph to the processors before
executing any process. This scheduling problem is known to be NP-complete in
general, and algorithms based on heuristic search, such as [1] and [2], have been
proposed to obtain optimal and suboptimal solutions.

There are several fundamental flaws with those static scheduling algorithms
even if a mathematical solution exists, because the algorithms assume that the
computation costs and communication costs which denoted by the weights of
nodes and edges in the graph are determinate.

In practice, sometimes it is very difficult to estimate the execution times of
various parts of a program without actually executing the parts, for example, one
� The author would like to thank Yicong Liu (LOIS, Chinese Academy of Sciences)

for her valuable comments and suggestions.
�� This paper is supported by commission of science technology and industry for

national defence, China (No. A1320070067).

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 18–29, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Static Multiprocessor Scheduling Algorithm 19

part has an iterative process and the actual times of iteration is data-dependent.
Therefore, scheduling these parts without using actual execution times is innately
inaccurate. In addition, some systems may also have communication delays that
vary under different circumstances, and it could also be difficult to incorpo-
rate variable communication delays in static scheduling problem. If we turn to
dynamic scheduling, it does incur an additional overhead which constitutes a
significant portion of the cost paid for running the scheduler during execution.

In this paper, we address only the static scheduling problem, and assume
that all the computation costs and communication costs are random variables,
the multiprocessor system is non-preemptive and can be heterogeneous. This
paper presents an uncertain intelligent scheduling algorithm based on stochastic
simulation and genetic algorithm to solve the multiprocessor scheduling problem
in uncertain environments.

2 Problem Description

2.1 The DAG Model

In static scheduling, a program can be represented by a DAG [3] G = (V, E),
where V is a set of v nodes and E is a set of directed edges. A node in the
DAG represents a task which is a set of instructions that must be executed
sequentially without preemption in the same processor. The weight of a node,
which represents the amount of time needed for a processor to execute the task,
is called the computation cost of the node. The edges in the DAG correspond to
the communication messages and precedence constraints among the nodes. The
weight of an edge, which represents the amount of time needed to communicate
the data, is called the communication cost of the edge.

The source node of an edge incident on a node is called a parent of that
node. Similarly, the destination node emerged from a node is called a child of
that node. A node with no parent is called an entry node and a node with no
child is called an exit node. The precedence constraints of a DAG dictate that a
node cannot start execution before it gathers all of the messages from its parent
nodes. The communication cost among two nodes assigned to the same processor
is assumed to be 0.

The processors in the target system may be heterogeneous or homogeneous.
Heterogeneity of processors means that the processors have different speeds. We
assume the processors can be heterogeneous, which means every part of a pro-
gram can be executed on any processor though the computation time needed on
different processors may be different. However, we simply assume the communi-
cation links are always homogeneous.

The notations used in the paper are summarized in Table 1. Computation
costs and communication costs are considered as uncertain variables. Specially,
ωk(ni) denotes uncertain computation cost of node ni on processor k in hetero-
geneous environments. An example DAG, shown in Fig. 1, will be used as an
example later.

20 J. Yang et al.

n1

(n1)

n3

(n3)

n4

(n4)

n5

(n5)

n8

(n8)

n7

(n7)

n6

(n6)

n2

(n2)

n9

(n9)

e15e12 e14e13

e17

e27e26 e38 e48

e89
e79

e69

Fig. 1. Example of a DAG

Table 1. Definitions of Some Notations

Symbol Definition

ni Node number of a node in the task graph
v Number of nodes in the task graph
p Number of processors in the target system
ω(ni) Uncertain computation cost of ni

ωk(ni) Uncertain computation cost of ni on processor k
eij Directed edge from ni to nj

c(ni, nj) Uncertain communication cost of eij

Parent(ni) The set of parents of ni

Child(ni) The set of children of ni

x,y Integer decision vectors
x′,y′ Legal integer decision vectors
t(ni) T-level of node ni

l(ni) Legal-order-level of node ni

FT (ni) Finish-time of node ni

f Makespan of a schedule

A Static Multiprocessor Scheduling Algorithm 21

2.2 Computing Top Levels

The top level [3] (t-level) of a node ni is the length of a longest path (there can
be more than one longest path) from an entry node to ni excluding ni.

An algorithm for computing the t-levels is shown below. Because computation
costs and communication costs are supposed to be stochastic variables in this
paper, notations in the algorithm, like ω(ni) and c(ni, nj), denote samples of
computation costs and communication costs. In the algorithm, t is a vector for
storing t-levels.

. Construct a list of nodes in topological order. Call it Toplist.

. for each node ni in Toplist do

. max = 0

. for each node nx ∈ P arent(ni) do

. if t(nx) + ω(nx) + c(nx, ni) > max then

. max = t(nx) + ω(nx) + c(nx, ni)

. endif

. endfor

. t(ni) = max

. endfor

3 Scheduling Representation

The scheduling in this paper is represented by Liu’s[4] formulation via two de-
cision vectors [4] x and y, where x = (x1, x2, . . . , xv) is an integer decision
vector representing v nodes with 1 ≤ xi ≤ v and xi �= xj for all i �= j and
i, j = 1, 2, . . . , v. That is , the sequence {x1, x2, . . . , xv} is a rearrangement
of {1, 2, . . . , v}. And y = (y1, y2, . . . , yp−1) is an integer decision vector with
y0 ≡ 0 ≤ y1 ≤ y2 ≤ . . . ≤ yp−1 ≤ v ≡ yp.

We note that the schedule is fully determined by the decision vectors x and y
in the following way. For each k(1 ≤ k ≤ p), if yk = yk−1, processor k is not used;
if yk > yk−1, processor k is used and processes nodes nxyk−1+1 , nxyk−1+2 , . . . , nxyk

in turn. Thus the schedule of all processors is as follows:

Processor 1: nxy0+1 → nxy0+2 → . . .→ nxy1
;

Processor 2: nxy1+1 → nxy1+2 → . . .→ nxy2
;

. . .
Processor p: nxyp−1+1 → nxyp−1+2 → . . .→ nxyp

.

3.1 Generating Legal Schedule

For a given random integer decision vectors (x, y), we have to rearrange them
to guarantee that the precedence constraints are not violated. For example, if
there are precedence relations between two nodes ni and nj, eij ∈ E, and both
of them are assigned to the same processor, we should guarantee that ni will

22 J. Yang et al.

be executed before nj. If there are no precedence relations between two nodes,
however, they can be executed in any order in that processor.

We can get a legal schedule by rearranging the list of nodes within each
processor by ascending order of t-levels. However, the t-level ordering condition
is only a necessary condition, so the optimal schedule may not satisfy it. To
reduce the likelihood of this happening, we define legal-order-levels which is
generated from t-levels of nodes. The algorithm to compute legal-order-levels
is shown below. In the algorithm, t is a vector of t-levels and l is a vector for
storing legal-order-levels.

. Construct a list of nodes in topological order. Call it Toplist.

. for each node ni do

. Initialize l(ni) = t(ni)

. endfor

. for each node ni in Toplist do

. Compute max = max{l(nj)}, nj ∈ P arent(ni)

. Compute min = min{l(nj)}, nj ∈ Child(ni)

. Generate a random l(ni) which satisfies min < l(ni) < max

. endfor

Finally we can compute legal integer decision vectors (x′, y′) by rearranging
nodes of the scheduling which is determined by (x, y). The steps are listed as
follows.

. Compute t-level t(ni) for each node ni

. Compute legal-order-levels l(ni) for each nodes ni

. for each integer k, 1 ≤ k ≤ p do

. if yk > yk−1 then

. Resort (xyk−1+1, xyk−1+2, . . . , xyk
) by ascending order of legal-order-

levels
. endif
. endfor
. x′ = x
. y′ = y

3.2 Stochastic Programming Model

For the multiprocessor scheduling problem, we can consider factors such as
throughput, makespan, and processor utilization for the objective function. The
objective function used for our algorithm is based on makespan, the overall
finish-time of a parallel program. The makespan of a schedule is defined as fol-
lows:

f(ω, c, x′, y′) = max
ni∈V

F T (ni) (1)

F T (ni) denotes finishing time of node ni. For a given DAG, the makespan is a
function of computation costs ω, communication costs c and the legal schedule
(x′, y′).

A Static Multiprocessor Scheduling Algorithm 23

In this paper, the makespan of a schedule is also uncertain because all the
computation costs and communication costs are given by stochastic variables.
We introduce an stochastic expected value model which optimizes the expected
makespan subject to some expected constraints. We assume that the expected
makespan E[f] should not exceed the target value b. Thus we have a constraint
E[f]− b = d+, in which d+ ∨0 (the positive deviation) will be minimized. Then,
we have the following stochastic expected value model:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min d+ ∨ 0
subject to:

E[f(ω, c, x′, y′)]− b = d+

ω(ni), ni ∈ V, stochastic variables
c(ni, nj), eij ∈ E, stochastic variables
(x′, y′), legal integer decision vectors

(2)

In order to compute the uncertain function E[f], first, a legal schedule (x′, y′)
is generated from (x, y). Second, we repeat N times to generate ω and c ac-
cording to their probability measure and use the samples to compute fi =
f(ω, c, x′, y′), i = 1, 2, . . . , N . Finally, the value E[f] is estimated by 1

N

∑N
i=1 fi

provided that N is sufficiently large, which is followed from the strong law of
large numbers.

Note that other stochastic models such as stochastic chance-constrained model
and stochastic dependent-chance model can also be used under different circum-
stances for modeling different stochastic systems. Stochastic simulations based
on those stochastic models will be used. In this paper, without loss of generality,
we only discuss the simplest one, stochastic expected value model.

4 Uncertain Intelligent Scheduling Algorithm

In this paper, we present an uncertain intelligent scheduling algorithm based
on stochastic simulation and genetic algorithm to solve the stochastic expected
value programming problem. From the mathematical viewpoint [4], there is no
difference between deterministic mathematical programming and stochastic pro-
gramming except for the fact that there exist uncertain functions in the latter.
If the uncertain functions can be converted to their deterministic forms, we can
obtain equivalent deterministic models. However, in general, we cannot do that.
It is thus more convenient to deal with them by stochastic simulations. Genetic
algorithm is a stochastic search method for optimization problems based on the
mechanics of natural selection and natural genetics and it has demonstrated
considerable success in providing good solutions to many complex optimization
problems. The standard genetic algorithm is shown below.

. Generate initial population

. while number of generations not exhausted do

. for i = 1 to P opulationSize do

. Randomly select two chromosomes and crossover

24 J. Yang et al.

. Randomly select one chromosome and mutation

. endfor

. Evaluate chromosomes and perform selection

. endwhile

. Report the best chromosome as the final solution

The initialization, evaluation, crossover and mutation operations, which are
used in our algorithm, are revised as follows.

4.1 Initialization

We encode a schedule into a chromosome (x, y), where x, y are the same as the
decision vectors. For the gene section x, we define a sequence {x1, x2, . . . , xv}
with xi = i, i = 1, 2, . . . , v. In order to get a random rearrangement of
{1, 2, . . . , v}, we repeat the following process from j = 1 to v: generating a
random position v′ between j and v, and exchanging the values of xj and xv′ .
For each i with 1 ≤ i ≤ p − 1, we set yi as a random integer between 0 and
v. Then we rearrange the sequence {y1, y2, . . . , yp−1} from small to large and
thus obtain a gene section y = (y1, y2, . . . , yp−1). Finally, (x, y) is used to gen-
erate and replaced by legal integer decision vectors (x′, y′) to guarantee that
the produced schedule is legal. In this way, we can ensure that the produced
chromosome (x, y) is always feasible.

4.2 Evaluation

Evaluation function is to assign a probability of reproduction to each chromo-
some so that its likelihood of being selected is proportional to its fitness relative
to the other chromosomes in the population. That is, the chromosomes with
higher fitness will have more chance to produce offspring by using roulette wheel
selection.

We define the rank-based evaluation function as a(1− a)i−1,i = 1, 2, . . .,
P opulationSize, where a ∈ (0, 1) is a given parameter. Note that i = 1 means
the best individual, i = P opulationSize the worst one.

4.3 Crossover

Let us illustrate the crossover operator on the pair (x1, y1) and (x2, y2). First,
we generate legal integer decision vectors for (x1, y2) and (x2, y1), which are de-
noted as (x′

1, y′
2) and (x′

2, y′
1). Then, two children are produced by the crossover

operation as (x′
1, y′

2) and (x′
2, y′

1). Note that the obtained chromosomes (x′
1, y′

2)
and (x′

2, y′
1) in this way are always feasible.

4.4 Mutation

We mutate the parent (x, y) in the following way. For the gene x, we ran-
domly generate two mutation positions v1 and v2 between 1 and v. If v1 ≤ v2,

A Static Multiprocessor Scheduling Algorithm 25

we rearrange the sequence xv1 , xv1+1, . . . , xv2 at random to form a new se-
quence x′

v1
, x′

v1+1, . . . , x′
v2

. Else, we rearrange the sequence x1, x2, . . . , xv2−1,
xv1+1, xv1+2, . . . , xv at random to form two new sequences x′

1, x′
2, . . . , x′

v2−1 and
x′

v1+1, x′
v1+2, . . . , x′

v.
Similarly, for the gene y, we generate two random mutation positions v1 and

v2 between 1 and p−1, and set yi as a random integer number y′
i between 0 and

v for i = v1, v1 +1, . . . , v2 if v1 ≤ v2. Or i = 1, 2, . . . , v2−1, v1 +1, v1 +2, . . . , v if
v1 > v2. We then rearrange the sequence from small to large and obtain a new
gene section y. Finally, we generate legal integer decision vectors (x′, y′) and
replace the parent with the offspring (x′, y′).

5 Performance Results

In this section, we use the DAG shown in Figure 1, and assume that the number
of processors is 4. Note that the problem is NP-hard even if the variables are
constants. So the solution of our algorithm may be near-optimal, as other ge-
netic algorithms. In this section, we focus on the differences between stochastic
environments and constant environments. The simulation results show that our
algorithm often succeed in finding best schedule that fit more to the real appli-
cations from those schedules which are considered the same in other algorithms
that use constant computation costs and communication costs.

Example 1. In the first example, we assume that processors in target system are
homogeneous, and all of the computation costs and communication costs are nor-
mally distributed variables, which may fit more than other distributions to real
applications. An normally distributed random variable is denoted by N(μ, σ2),
where μ and σ are given real numbers. If we use the means of computation costs
and communication costs in Table 2 instead of the random variables, we can
get schedules produced by several list scheduling algorithms [3] such as dynamic
critical path (DCP) algorithm[5], modified critical path (MCP) algorithm[6] and
so forth. The schedule generated by the DCP algorithm is shown below,which is
an optimal schedule (makespan = 16) under determinate costs assumption. We
denote it as DCP-1.

Table 2. Normally distributed computation costs and communication costs

Symbol Definition Symbol Definition Symbol Definition

ω(1) N(2, 1) ω(2) N(3, 1) ω(3) N(3, 1)
ω(4) N(4, 1) ω(5) N(5, 1) ω(6) N(4, 1)
ω(7) N(4, 1) ω(8) N(4, 1) ω(9) N(1, 1)

c(1, 2) N(4, 1) c(1, 3) N(1, 1) c(1, 4) N(1, 1)
c(1, 5) N(1, 1) c(1, 7) N(10, 1) c(2, 6) N(1, 1)
c(2, 7) N(1, 1) c(3, 8) N(1, 1) c(4, 8) N(1, 1)
c(6, 9) N(5, 1) c(7, 9) N(6, 1) c(8, 9) N(5, 1)

26 J. Yang et al.

Processor 1: n4 → n8 → n6 → n9;
Processor 2: n1 → n2 → n7;
Processor 3: n3 → n5;
Processor 4: is not used.

Actually there are some more optimal schedules in this problem. Another
optimal schedule produced by DCP with different scheduling list [2] is denoted
by DCP-2 shown below.

Processor 1: n1 → n2 → n7;
Processor 2: n4 → n8 → n9;
Processor 3: n3 → n5;
Processor 4: n6.

The schedule produced by MCP algorithm which is not an optimal schedule
(makespan = 20) is shown below and denoted by MCP.

Processor 1: n1 → n4 → n2 → n7 → n9;
Processor 2: n3 → n6;
Processor 3: n8;
Processor 4: n5.

We suppose that the target value of expected makespan is b = 0. A run of the
uncertain intelligent scheduling (UIS) algorithm (10000 cycles in stochastic sim-
ulation, 400 generations in genetic algorithm) shows that the optimal schedule
which is denoted by UIS-1 is

Processor 1: n1 → n2 → n7 → n8 → n9;
Processor 2: n4 → n5;

0 200 400 600 800 1000
14

15

16

17

18

19

20

21

Number of samples

E
xp

ec
te

d
m

ak
es

pa
n

UIS−1
UIS−2
UIS−3
DCP−1
DCP−2

Fig. 2. Expected makespans of example 1

A Static Multiprocessor Scheduling Algorithm 27

Processor 3: n3;
Processor 4: n6.

Note that the schedules DCP-1, DCP-2 and UIS-1 are all optimal schedules
under determinate costs assumption, but they perform differently when costs
have uncertainty. In uncertain environment, simulation results show that the
expected makespans (10000 samples in simulation) of MCP, DCP-1, DCP-2 and
UIS-1 are 20.34, 17.59, 16.97 and 16.41.

Example 2. In the second example, one processor in target system is heteroge-
neous and a little faster than the other three. Without lose of generality, we as-
sume that Processor 1 is a little faster. The computation costs on this processor are
listed in Table 3. A run of UIS Algorithm (10000 cycles in stochastic simulation,
400 generations in genetic algorithm) shows that the optimal schedule is

Processor 1: n1 → n2 → n7 → n8 → n9;
Processor 2: n3 → n5;
Processor 3: n4;
Processor 4: n6.

We denote the schedule as UIS-2. The 4 schedules in the former example are
also used in simulation. To guarantee that the best schedule is obtained, we
suppose that the processor to which most nodes are assigned is the faster one.
In uncertain environment, simulation results show that the expected makespans
(10000 samples in simulation) of MCP, DCP-1, DCP-2 ,UIS-1 and UIS-2 are
19.11, 16.91, 15.76, 15.39 and 15.32.

0 200 400 600 800 1000
13

14

15

16

17

18

19

20

Number of samples

E
xp

ec
te

d
m

ak
es

pa
n

UIS−1
UIS−2
UIS−3
DCP−1
DCP−2

Fig. 3. Expected makespans of example 2

28 J. Yang et al.

Table 3. Computation costs on Processor 1 in heterogeneous system

Symbol Definition Symbol Definition Symbol Definition

ω1(1) N(1.5, 1) ω1(2) N(2.5, 1) ω1(3) N(2.5, 1)
ω1(4) N(3.5, 1) ω1(5) N(4.5, 1) ω1(6) N(3.5, 1)
ω1(7) N(3.5, 1) ω1(8) N(3.5, 1) ω1(9) N(1, 1)

Example 3. In the third example, we also use the heterogeneous system in the
second example. But all the real numbers σ2 in N(μ, σ2) are changed from
1 to 0.5. A run of UIS Algorithm (10000 cycles in stochastic simulation, 400
generations in genetic algorithm) shows that the optimal schedule is

Processor 1: n1 → n2 → n7 → n5;
Processor 2: n6 → n8 → n9;
Processor 3: n4;
Processor 4: n3.

We denote the schedule as UIS-3. In uncertain environment, simulation results
show that the expected makespans (10000 samples in simulation) of MCP, DCP-
1, DCP-2 ,UIS-1, UIS-2 and UIS-3 are 18.58, 16.23, 15.24, 15.04, 15.02 and 14.77.

The results of the three examples are listed in Table 4. We can see that MCP
performs poor because the schedule is not optimal even in the constant costs
assumption. However, the other 5 schedules are all optimal (makespan=16) in
the case that the costs are constant. They performs differently in uncertain
environments. Part of the results are shown in Fig. 2, Fig. 3 and Fig. 4. The
curves show the first 1000 samples in the simulation results and MCP is not

0 200 400 600 800 1000
13

13.5

14

14.5

15

15.5

16

16.5

17

17.5

Number of samples

E
xp

ec
te

d
m

ak
es

pa
n

UIS−1
UIS−2
UIS−3
DCP−1
DCP−2

Fig. 4. Expected makespans of example 3

A Static Multiprocessor Scheduling Algorithm 29

Table 4. Simulation Results (10000 samples in simulation)

Example System σ2 MCP DCP-1 DCP-2 UIS-1 UIS-2 UIS-3

1 homogeneous 1 20.34 17.59 16.97 16.41 16.45 16.66
2 heterogeneous 1 19.11 16.91 15.76 15.39 15.32 15.42
3 heterogeneous 0.5 18.58 16.24 15.24 15.04 15.02 14.77

included because the schedule is not optimal even in the case that the costs are
constant.

6 Conclusions

In this paper, we present an uncertain intelligent scheduling algorithm to solve
the multiprocessor scheduling problem in uncertain environments. We introduce
an expected value model based on stochastic simulation and devise a genetic
algorithm to obtain optimal solution. In simulation examples, it shows that our
algorithm performs better than other algorithms in uncertain environments.

References

1. Hou, E.S.H.: A genetic algorithm for multiprocessor scheduling. IEEE Transaction
on Parallel and Distributed Systems 5(2), 113–120 (1994)

2. Kwok, Y.K., Ahmad, I.: Efficient scheduling of arbitrary task graphs to multipro-
cessors using a parallel genetic algorithm. Journal of Parallel and Distributed Com-
puting (47), 58–77 (1997)

3. Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Computing Surveys 31(4), 406–471 (1999)

4. Liu, B.: Theory and Practice of Uncertain Programming, 1st edn. Physica-Verlag,
Heidelberg (2002)

5. Kwok, Y.K., Ahmad, I.: Dynamic critical-path scheduling: An effective technique for
allocating task graphs to multiprocessors. IEEE Tran. Parallel Distrib. Syst. 7(5),
506–521 (1996)

6. Wu, Gajaki: Hypertool: A programming aid for message-passing systems. IEEE
Trans. Parallel Distrib. Syst. 1(3), 330–343 (1990)

An ACO Inspired Strategy to Improve Jobs

Scheduling in a Grid Environment

Marilena Bandieramonte, Antonella Di Stefano, and Giovanni Morana

Dept. of Computer Science and Telecommunication engineering,
Catania University, Italy

{marilena.bandieramonte,ad,gmorana}@diit.unict.it

Abstract. Scheduling is one of the most crucial issue in a grid environ-
ment because it strongly affects the performance of the whole system. In
literature there are several algorithms that try to obtain the best perfor-
mance possible for the specified requirements; taking into account that
the issue of allocating jobs on resources is a combinatorial optimization
problem, NP-hard in most cases, several heuristics have been proposed
to provide good performance. In this work an algorithm inspired to Ant
Colony Optimization theory is proposed: this algorithm, named Aliened
Ant Algorithm, is based on a different interpretation of pheromone trails.

The goodness of the proposed algorithm, in term of load balancing
and average queue waiting time, has been evaluated by mean of a vast
campaign of simulations carried out on some real scenarios of a grid
infrastructure.

Keywords: scheduling algorithms, grid computing, simulation, ant
colony optimization, aliened ant.

1 Introduction

Grid[8][9][10] is a distributed infrastructure that concurs to connect various type
of resources (in terms of power of calculation, memory, etc) and to share them.
Grids offer different types of resources belonging to scalable groups of research
organizations without a particular geographic characterization named Virtual
Organization(VO)[8][9]. Grids are used for High Performance Computing (HPC)
applications and, also, for business applications. In the HPC scenarios typically,
grid users are scientists that need instrumentation for HPC and cooperate on ex-
periments done on a huge quantity of data. The grid services allow e-scientists to
approach calculation power, storage capability and information stages, guaran-
teeing an access co-ordinated and controlled to them, offering to these customers
the visibility of a unique computation system to which submit the jobs.

In a grid environment the jobs scheduling strategy plays a crucial role since
it influences the effective usage of system resources, that can be expressed by
queue waiting time, job throughput and fair load balancing.

In this work, we propose an algorithm inspired from ACO[1] heuristic to face
the scheduling problems in a grid environment. In particular we show how this

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 30–41, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An ACO Inspired Strategy to Improve Jobs Scheduling 31

algorithm allows to obtain good performance on two main scheduling issues: the
first one is related to queue waiting time perceived by resources users, the second
one is related to resources usage (load balancing and jobs throughput) perceived
by resources managers.

The rest of the paper is organized as follows. Section 2 presents the main
issues related to jobs allocation in grid. Section 3 introduces the Ant Colony
Optimization theory and the concepts related to an ACO algorithm model. Then
the Aliened Ant Algorithm is depicted. Section 4 presents the simulation results.
Finally, Section 5 briefly concludes the work.

2 The Scheduling Issues in Grids

Generally, grid environments are composed by a wide quantity of different types
of processing nodes, storage units, scientific instrumentation and information,
belonging to different research organizations, exploited by users of a virtual or-
ganization (VO[8][9]). Each time a VO user submits a job in the grid, it has to
make reference to a Resource Broker (in the follow RB). The aim of RB is to
receive all job submission requests, to analyze the job requirements and features,
to map jobs to the resources required for their execution and, finally, to dispatch
them to the most suitable Computing Element (in the follow CE). Each CE
handles the job management system (JMS) of the underlying cluster of Worker
Nodes (in the follow WN). The aim of WNs is to execute jobs and to return
their results to VO users. Scheduling policies are an essential part for the func-
tioning of a Grid. The scheduling issue, on a grid environment, has many unique
characteristics that make it different compared to traditional scheduling on par-
allel and distributed computing systems. For example, unlike the counterparts
in traditional parallel and distributed systems, Grid schedulers usually cannot
control Grid resources directly, but work like brokers or agents; also, in a Grid,
resources are distributed in multiple domains then not only the computational

RB

CE

CE

CE

CE
CE

CE

CE

WN

WN

WN

WN

WN

WN
WN

WN
WN

WN
WN

WN
WN

WN

WN

Research Org#1

Research Org#2

Research Org#3

Virtual Organization (VO)

Fig. 1. Grid organization

32 M. Bandieramonte, A. Di Stefano, and G. Morana

and storage nodes, but also the underlying networks connecting them are het-
erogeneous.

Fig. 1 shows a typical example of grid deployment. In this type of hierarchical
organization it is possible to identify three scheduling layers. The first one is
related to the algorithm used by RB to distribute jobs among CEs; this algorithm
influences in a strong manner the performance of the whole system. The second
scheduling layer manages the jobs allocation done by the CE on its underlying
WNs. Finally lowest scheduling activity is related to the mechanism used by
the operating system(OS) of each WN to schedule jobs on its CPU. In the
following will be taken into account only the first two levels of scheduling: it has
been assumed that the OS scheduling is constituted by non preemptive FIFO
schedulers that link only one job per CPU at time (as used in HPC systems).

3 Aliened Ant Algorithm

In 1996 M. Dorigo [1,2,6,7] introduced the Ant Colony Optimization (ACO) the-
ory . The main target of this algorithms class, that is inspired from the behavior
of real ants, is to solve several types of combinatorial optimization problems ex-
ploiting the self-organizing ability of these little bugs. The ants are able to solve
the issues related to colony survival communicating indirectly with each other.
A known example is represented by their ability to find minimum paths from
the colony to food in a brief time. This is possible because each ant marks the
found path with a chemical trail, called pheromone, in a quantity proportional
to quality and proximity of food. As greater is the amount of pheromone of a
path, as greater will be the probability that another ant, in looking for food, will
choose it reinforcing the pheromone quantity. Thus, while the level of pheromone
of the best path slowly grows, because of evaporation1, the level of pheromone
of the other paths decreases. Following this algorithm, after a certain number of
iterations, all ants will follow the path with higher concentration of pheromone,
identifying it as the minimum path from the colony to food. The ACO class algo-
rithms follow a theoretical formalization of the above mentioned ants behavior.
As expressed in [1], every ACO algorithm focuses on a parametric probabilistic
model, known as pheromone model. This model is characterized by parameters
vectors that store the tracks of pheromone, called pheromone trail parameters.
The steps of a generic ACO algorithm are the following: firstly the pheromone
tracks are initialized for each path(step 0); next, for each iteration, the ant ai

builds a set of solutions for the combinatorial optimization problem (step 1) on
the basis of the value of pheromone tracks (that are updated, every time, with a
mechanism simulating the evaporation). From this solution set (step 2) the best
one is probabilistically extracted2. Finally, before the beginning of next cycle,
the ant releases the pheromone (step 3) on the selected path, to mark its choice.

1 Over time, the pheromone trails start to evaporate, reducing their attractive
strength.

2 This is done through a specific policy related to application context.

An ACO Inspired Strategy to Improve Jobs Scheduling 33

Doing so, for each iteration, the algorithm is able to find the best solution for
the considered problem.

Recently, several studies investigate the ACO theory, both producing theoretic
formulation about this issue and proposing application to face several problems.
In this paper it is proposed an algorithm, freely inspired from ACO theoreti-
cal formulation, that allows to obtain a suboptimal solution for the scheduling
problem in a Grid environment: the Aliened Ant Algorithm. The aim of this
algorithm is to perform a scheduling policy that:

– guarantees a good load balancing,
– provides a reasonable response time,
– is able to adjust itself on changing of jobs load and network conditions.

Also, referring to grid environments explained in Section 2, this algorithm can
be used both in the first and in the second scheduling layers. There are many
versions of ACO based algorithms, each different from the others because of
the mechanisms used to update pheromone: some examples in literature are AS-
update rule (ant-system) used in AS algorithm [4], and IB-update rule (iteration-
best) and BS-update rule (best-so-far) used in ACS (Ant Colony System)[5] and
MMAS (Max-Min Ant System) algorithms [3].

The proposed solution differentiates itself from other approaches since it is
based on a reverse interpretation of pheromone trails.

3.1 Algorithm Description

The proposed solution, inspired from mentioned ACO algorithm, takes into ac-
count the behavior of an ideal aliened ant.

This ant stays away from tussle and prefers the paths where it can found the
least number of other ones. In order to achieve this it smells pheromone trails
but, instead of following the path where the pheromone trail is stronger (as the
other normal ants), it takes the path with the lighter one. For the aliened ant,
in fact, a tenuous pheromone trails on a path means that either only few ants
have taken the path or much time has passed from the last use of the path.

Doing a comparison between the aliened ant and a job and considering re-
sources as paths, it is possible to transform the behavior of the aliened ant in a
job scheduling algorithm.

Referring to the sequence of steps describing the functioning of generic ACO
depicted in the previous section, the proposed algorithm can be explained as
follows:

Step 0: pheromone trails initialization Vectors, representing all links between the
scheduler and the resources, are created: in our model this is done linking RB
with CEs and each CE with its WNs. The pheromone trails in each vector are
initialized with a value that is inversely proportional to the computational power
of the linked resource; this allows to reach speedily the steady state condition.

34 M. Bandieramonte, A. Di Stefano, and G. Morana

Step 1 and Step 2: trails evaluation (construction and selection of solution)
and pheromone evaporation Each time a job arrives at the scheduler, it has to
decide in which node the job has to be allocated. In our algorithm this decision
is taken basing on pheromone trails, following the strategy of the aliened ant.
The scheduler assigns a probability value to the underlying resources, basing on
the value of the relevant entry in the trails vector. The probability for the ith
resource is calculated as:

1− phresi

phresT OT
(1)

where phresi is the value of pheromone trail related to the ith resource and
phresT OT is the sum of pheromone trails of all resources.
The lower is the pheromone value the greater is the probability to select the
resource. In order to simulate pheromone evaporation, at each scheduling cycle
there is an update of trails vector entries value. Each entry is updated basing
on:

– computational power of the relevant resource: this assures that the greater is
the resource power the greater is the speed of pheromone evaporation and,
consequently, the probability to select the resource.

– the elapsed time: this guarantees the logical consistency between the
pheromone evaporation mechanism and the time spent in jobs scheduling.

The evaporation mechanism, that is applied to all entries of trails vector, follows
the formula below:

ΔP hT = −(elT ime ∗ compP oweri) (2)

where ΔP hT 3 represents the updating value of pheromone trail, elT ime is the
time (in minutes) elapsed since last update operation and compP oweri is a value
related to the computational power of ith resource.

Step 3: trails updating The mechanism used to update the trails values is very
simple and it is based on the estimation of tasks duration (obtained either from
scheduler job profiling or from user indication). Each time a job is scheduled,
the trail value, related to resource in which the job has been sent, is increased
by a quantity equals to the estimation of the job execution time, expressed in
minutes.

ΔP hT = jobExT ime (3)

The pseudo-code below summarizes the Aliened Ant Algorithm:

Aliened Ant - C style pseudo code

3 It should be noted that the PhT value can not be less than zero. If the PhT , after
the updating process has a negative value, it is rounded to zero.

An ACO Inspired Strategy to Improve Jobs Scheduling 35

trailInit(pherVector[]);

void AlienedAnt(pherVector[], taskTimeEval){
//evaporation step
for (i=O;i<pherVectorLenght;i++){
pherVector[i] = pherVector[i] - evap(elasedTime,resNumber);
}
//solution creation->resource selection step
res = evalPher(pherVector);
//pheromone trail update step
pherVector[res] = pherUpdate(TaskTimeEval);
return;

}

4 Simulations Campaign

The performance evaluations of the proposed algorithm and the comparisons
with other solutions have been done on a real grid model using the Simgrid[11]
simulator. Simgrid is a toolkit that provides core functionalities for the sim-
ulation of distributed applications in heterogeneous distributed environments;
it enables the simulation for the specific purpose of developing and evaluating
scheduling algorithms on distributed resource infrastructure defined by the user.
The measures have been done considering:

– the system behavior when changing of load in terms of (i) submitted jobs
number and (ii) composition of jobs type (i.e. proportion among short,
medium and long jobs)

– the system behavior in case of wrong estimation of jobs execution time.

In order to evaluate the performance, two evaluation concerns have been taken
into account: the first one is related to queue waiting time perceived by resource
users, the second one is related to resources usage (load balancing and jobs
throughput) perceived by resource managers. In the following, we shortly depict
the grid model, the algorithms compared with the proposed one and, finally, we
show the results.

4.1 Reference Infrastructure

The grid model used for the simulations, reproduces a realistic scenario: the
Cometa PI2S2 grid infrastructure4. This grid infrastructure involves 3 sites
(in the cities of Catania, Palermo and Messina, including Universities and
Research Centers) where 7 clusters of Worker Nodes are managed by the
relevant Computing Elements, coordinated by a single Resource Broker, related
to the various research organizations forming part of the consortium. The
4 Cometa is a multi-entity consortium for the promotion and adoption of advanced

computing technologies: www.consorzio-cometa.it.

36 M. Bandieramonte, A. Di Stefano, and G. Morana

COMETA-INAF-CT

COMETA-INFN-CT

COMETA_INFNLNS-CT
COMETA-UNIPA COMETA-UNIME

COMETA-UNICT-DIIT COMETA-UNICT-DMI

WN 1..84

WN 1..48

WN 1..56

WN 1..20

WN 1..32 WN 1..12
WN 1..36

COMETA-Resource Broker

Fig. 2. PI2S2 grid infrastructure

number of these Worker Nodes changes from a Computing Element to another
one. The grid and the jobs flow model were created considering the information
related (i) to the types and the distribution of resources in the real PI2S25 grid
infrastructure and (ii) to the dimension of the waiting queues for different type
of jobs typically submitted by the users.

4.2 The Scheduling Algorithms Used for a Comparison

The Aliened Ant Algorithm has been compared with other algorithms, which
are briefly described below.

Random-based scheduling. This algorithm (in the follow RbS) is used only to
demonstrate that the adoption of an intelligent scheduling algorithm is a necessary
condition to obtain good performances. Although causality makes this algorithm
insensible both to load increasing and to all possible errors considered, simulations
show that it is always convenient to adopt intelligent scheduling mechanisms.

RoundRobin scheduling. This algorithm (in the follow RR) aims to be fair in
distributing jobs between CEs or WNs. Used at both RB and individual CE
level, this algorithm ensures an equal jobs distribution on underlying resources.
This algorithm is very simple: the scheduler (RB or CE) keeps (i) a list of all the
suitable resources (CE or WN) and (ii) the position of the last resource scheduled
(initially the first resource of the list); every time a job has to be scheduled, the
scheduler (RB or CE) takes from the list the resource positioned immediately
after the last one used.

Scheduling based on resources availability. This algorithm (in the follow RA),
used at RB level, ensures that the jobs are submitted to the various CEs based
on the number of the available underlying resources (WN). This means that,
unlike the previous two algorithms, the RB is aware of the overall structure of
the network6 and gives more jobs, in a proportional manner, to CE with more
5 These information can be found at www.pi2s2.it.
6 The RB knows how many WNs there are on each CE.

An ACO Inspired Strategy to Improve Jobs Scheduling 37

available resources. While the RR algorithm assigns m
nCEs jobs to each CE (m

is the number of jobs and nCEs is number of CEs), this one assigns to each CE
nW Ni ∗ m

nWNT OT
job (m is the number of jobs, nW Ni is the number of WNs

of ith CE and nW NTOT is the number of all WNs in the considered grid). This
ensures a fair resources distribution at the level of CE and tends to reduce the
queue waiting times if compared to the RR algorithm. In practice the RB assigns
to each CE a probability of being chosen by the scheduling mechanism that is
proportional to the number of underlying WNs.

CE dedicated scheduling. This algorithm (CED in the follow) maps specific types
of jobs to a specific CE used, exclusively, to execute these types of jobs. In order
to do this, the RB has to know more information, about resources distribution
and jobs types, respect to the previous ones; in fact, it is necessary that the
RB, besides the knowledge of the WNs number of each CE (also needed in the
last proposed one) must have an estimation of the execution time of each job
(estimation obtained from profiling operation or from user indication).

Considering three different types of jobs (small<10min, medium<100m and
long>100 min), the CED scheduling algorithm assigns a set of CEs (consequently
a set of WNs) to each type of job based on a prediction of the workload compo-
sition. Using a job load composed by 15% of long, 75% of medium and 10% of
short, it has been decided to order the CEs by number of its WNs and to reserve
the two most powerful CE to long jobs, the two less ones to short jobs and the
remaining ones to medium jobs. At CE scheduling level, the jobs are distributed
on underlying WNs in a round robin way.

WN dedicated scheduling. This algorithm (WND in the follow), similarly to the
previous, assigns a number of different resources to different types of jobs but,
unlike the previous one, the distinction is done locally at each CE. This algorithm
is built on the real one used in the PI2S2 grid infrastructure where each CE
presents a queue for each specific job type. In practice, each CE reserves a certain
number of WNs to the various types of job based on load type expectation; in
the adopted configuration, every CE reserves the 50 % of its WNs to long jobs,
the 30 % to medium jobs and the remaining 20 % to short jobs. The proportion
job-WNs is chosen on the basis of the same considerations made for the previous
algorithm. At the RB scheduling level, the jobs are distributed on underlying
CEs in a round robin way.

4.3 Performance Evaluations Results

This section briefly discusses the results of the measures obtained by led simu-
lations to evaluate the proposed Aliened Ant (AA) algorithm.
The considered evaluation scenarios make reference to:

– the real grid deployment, described above (see Fig. 2), which consists of
69 WNs (276 CPUs) distributed on 7 CEs under a single RB that receives
jobs from 3 load generators (called User Interfaces into grid systems); one
generator for each type of jobs.

38 M. Bandieramonte, A. Di Stefano, and G. Morana

– a workload consisting of three types of jobs, distinguished according to their
execution time and named (i) ”short” if their duration varies on range be-
tween 1 and 10 minutes, (ii) ”medium” if varies between 10 and 100 minutes
and (iii) ”long” if their duration is more than 100 minutes. The jobs are
composed using short(10%):medium(75%):long(15%) ratio, but other ratios
are also considered to observe the general behavior.

The measures refer for each simulation to steady state condition. For each algo-
rithm are evaluated:

– the load balancing capability. For each scheduling algorithm it will be shown
the trend of jobs distribution among the CEs in terms of standard deviation
(σ, named σlb): using this parameter, the performance of the algorithm
is better when the value of σ is small (i.e σlb = 0 means an equal jobs
distribution on each CE, σlb >> 0 means bad load balancing capability) .

– the average queue waiting time. For each scheduling algorithm the job aver-
age queue waiting time (named μqwt) is measured on each CE.

Behavior when changing the workload in terms of quantity of submitted jobs.
The Fig. 3 shows the average queue waiting time and the standard deviation of
load balancing when the number of jobs put in the grid grows. The measures
have been done respectively from 1000 to 5000 jobs (1000 jobs per step), main-
taining constant the jobs rate (jobs/s) and the proportion between jobs types
short(10%):medium(75%):long(15%). In terms of μqwt, the AA, CED and RA
algorithms give good results. In particular, the Aliened Ant Algorithm shows
the best behavior. The other three algorithms present bad results: in particular,

Fig. 3. μqwt and σlb when changing the workload in terms of quantity of submitted
jobs

An ACO Inspired Strategy to Improve Jobs Scheduling 39

the Random algorithm gives the worst result, demonstrating the importance of
a good scheduling algorithm. In terms of σlb, instead, all algorithms present
the same behavior: their trend worsens with increasing workload size. As it is
foreseeable, the RA algorithm shows the best load balancing capability.

Behavior when changing the ratio between jobs types. The Fig. 4 shows the
average queue waiting time and the standard deviation of load balancing when
it changes the proportion between short, medium and long jobs. The measures
have been done with 3000 jobs respectively divided7 in (1)2100: 600 :300, (2)1800:
600: 600, (3)1000: 1000: 1000, (4)600: 600: 1800, (5)300: 600: 2100. Generally,
these results confirm what has been observed previously. The only exception is
represented by CED algorithm since its behavior is related to the jobs types
proportion in the workload: when there are a large amount of long jobs ((3),(4)
and (5) measures), the performance of this algorithm is better than others in
terms of μqwt but it shows bad behavior in terms of σlb. It should be noted
that, also in this case, Aliened Ant presents very good performance in terms of
μqwt.

Fig. 4. μqwt and σlb when changing the ratio between jobs types

Behavior in presence of wrong jobs execution time estimation. The Fig. 5 shows
the average queue waiting time and the standard deviation of load balancing
when there are errors in the estimation of jobs execution time. Measures have
been done when the estimation error is, respectively, 5, 10, 20, 25 and 30% of
total execution time. In the figure are shown only the trends related to Aliened
7 short:medium:long.

40 M. Bandieramonte, A. Di Stefano, and G. Morana

Fig. 5. μqwt and σlb in presence of wrong jobs execution time estimation

Ant, CED and WND (WND only in the μqwt fig.) algorithms since their behav-
ior is related to jobs size estimation: other algorithms are insensitive regarding
these types of errors. Measures have demonstrated that all algorithms taken
into account present an high error tolerance since their performance remains
approximately constant for considered errors percentage. This happens because,
although an estimation could be wrong, it is very difficult to mistake a job
belonging to a class with one belonging to another class (due to the different
magnitude order).

5 Conclusion

This paper proposes the Aliened Ant algorithm, a heuristic technique freely in-
spired from Ant Colony Optimization theory that, in order to reduce the average
queue waiting time, exploiting own interpretation of pheromone trails, is able to
identify the least loaded computational resource among ones available in a Grid
environment. In particular, here they were given a general algorithm description
and a simulation campaign results to show the algorithm performance when it
is used to face the jobs scheduling issues in a grid environment. Also, in the lead
tests, a comparison with other scheduling algorithms performance is done.

As shown in Section 4.3 the proposed solution allows to obtain very good
performance in term of average queue waiting time (measured on each CE com-
posing the grid model used for simulation).

In the future our research will be focused (i) on discovery of new techniques
to update pheromone trails and evaporation mechanism, (ii) on comparison

An ACO Inspired Strategy to Improve Jobs Scheduling 41

between Aliened Ant algorithm and other bio-inspired heuristics and (iii) on
evaluation of AA Algorithm with a distributed Resource Broker.

References

1. Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Journal Theoret-
ical Computer Science 344(2-3), 243–278 (2005)

2. Sun, K.M.S.W.H.: Ant colony optimization for routing and load-balancing: survey
and new directions. IEEE Trans. on Systems, Man and Cybernetics, Part A 33(5),
560–572 (2003)

3. Stytzle, T., Hoos, H.H.: MAX-MIN Ant system. Future Generation Computer Sys-
tems 16(9), 889–914 (2000)

4. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. IEEE Trans. on Systems, Man and Cybernetics, Part B 26(1),
29–41 (1996)

5. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning ap-
proach to the traveling salesman problem. IEEE Trans. on Evolutionary Compu-
tation 1(1), 53–66 (1997)

6. Merkle, D., Middendorf, M., Schmeck, H.: Ant colony optimization for resource-
constrained project scheduling. IEEE Trans. on Evolutionary Computation 6(4)
(2003)

7. Blum, C., Sampels, M.: An ant colony optimization algorithm for shop scheduling
problems. Journal of Mathematical Modeling and Algorithms 3(3) (2004)

8. Kesselman, C., Foster, I., Tuecke, S.: The Anatomy of the Grid - Enabling Scal-
able Virtual Organizations. International Journal of High Performance Computing
Applications 15(3), 200–222 (2001)

9. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration. Open Grid
Service Infrastructure WG, Global Grid Forum (2002)

10. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers (1999) ISBN: 1-558660-475-8

11. http://simgrid.gforge.inria.fr/

http://simgrid.gforge.inria.fr/

Architecture Aware Partitioning Algorithms�

Irene Moulitsas1,2 and George Karypis1

1 University of Minnesota, Department of Computer Science and Engineering
and Digital Technology Center and Army HPC Research Center

Minneapolis, MN 55455
2 The Cyprus Institute, P.O. Box 27456, 1645 Nicosia, Cyprus

{moulitsa,karypis}@cs.umn.edu

Abstract. Existing partitioning algorithms provide limited support for
load balancing simulations that are performed on heterogeneous parallel
computing platforms. On such architectures, effective load balancing can
only be achieved if the graph is distributed so that it properly takes into
account the available resources (CPU speed, network bandwidth). With
heterogeneous technologies becoming more popular, the need for suitable
graph partitioning algorithms is critical. We developed such algorithms
that can address the partitioning requirements of scientific computations,
and can correctly model the architectural characteristics of emerging
hardware platforms.

1 Introduction

Graph partitioning is a vital pre-processing step for many large-scale applica-
tions that are solved on parallel computing platforms. Over the years the graph
partitioning problem has received a lot of attention [3, 12, 5, 1, 2, 7, 10, 11, 14, 15,
18, 19, 23, 20]. Despite the success of the existing algorithms, recent advances in
science and technology demand that new issues be addressed in order for the
partitioning algorithms to be effective.

The Grid infrastructure [9,4] seems to be a promising viable solution for sat-
isfying the ever increasing need for computational power at an affordable cost.
Metacomputing environments combine hosts from multiple administrative do-
mains via transnational and world-wide networks into a single computational
resource. Even though message passing is supported, with some implementation
of MPI [8], there is no support for computational data partitioning and load

� This work was supported in part by NSF EIA-9986042, ACI-0133464, ACI-0312828,
and IIS-0431135; the Digital Technology Center at the University of Minnesota;
and by the Army High Performance Computing Research Center (AHPCRC) under
the auspices of the Department of the Army, Army Research Laboratory (ARL)
under Cooperative Agreement number DAAD19-01-2-0014. The content of which
does not necessarily reflect the position or the policy of the government, and no
official endorsement should be inferred. Access to research and computing facilities
was provided by the Digital Technology Center and the Minnesota Supercomputing
Institute.

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 42–53, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Architecture Aware Partitioning Algorithms 43

balancing. Even on a smaller scale, clusters of PCs have become a popular alter-
native for running distributed applications. The cost effectiveness of adding new,
and more powerful nodes to an existing cluster, and therefore increasing the clus-
ter potential, is an appealing solution to a lot of institutions and researchers. We
can clearly see that upcoming technologies have introduced a totally new class
of architectural systems that are very heterogeneous in terms of computational
power and network connectivity.

Most of the graph partitioning algorithms mentioned above compute a data
partitioning that is suitable for homogeneous environments only. Recently there
has been some work on partitioning for heterogeneous architectures, namely
PaGrid [16, 24], JOSTLE [22], MiniMax [21], and DRUM [6].

In the context of the widely used MeTiS [17] library, we have developed graph
partitioning algorithms for partitioning meshes/graphs onto heterogeneous ar-
chitectures. Our algorithms allow full heterogeneity in both computational and
communication resources. We use a more accurate model to describe the commu-
nication cost instead of the notion of edgecut used in the algorithms mentioned
above. We also do not solve the expensive and unscalable quadratic assignment
problem, and we do not enforce a dense processor-to-processor communication.

In the remainder, Section 2 discusses the modeling of the computational graph
and the heterogeneous architecture system. In Section 3 we present the problem
formulation. In Section 4 we describe our proposed algorithms. Section 5 presents
a set of experimental results. Finally Section 6 provides some concluding remarks.

2 Problem Modeling

The graph partitioning problem can be defined as follows: Given a graph G =
(V, E), where V is the set of vertices, n = |V | is the number of vertices, and E
is the set of edges in the graph, partition the vertices to p sets V1, ..., Vp such
that Vi

⋂
Vj = ∅ for i �= j and

⋃
Vi = V , for i, j = 1, ..., p. This is called a

p−way partitioning and is denoted by P . Every one of the subsets Vi is called a
partition or subdomain. P is represented by a partition vector of length n, such
that for every vertex v ∈ V , P [v] is an integer between 1 and p, indicating the
partition which v is assigned to.

2.1 Computational Graph Modeling

The graph G is a weighted graph if every vertex v is associated to either or
both weights w(v) and c(v). If no specific weights are provided, we can assume
that all vertices, have uniform weights. The first vertex weight w is assigned
depending on the amount of computations performed by a vertex. The second
weight c reflects the amount of data that needs to be sent between processors
i.e., communication.

The majority of multilevel graph partitioning formulations have primarily
focused on edgecut based models and have tried to optimize edgecut related
objectives. In the edgecut model all the edges split between different partitions
account as multiple communication messages. The edgecut metric is only an

44 I. Moulitsas and G. Karypis

P0 P1

u[1]

v2[1]

v3[1]

v4[1]

v1[1]
2

2

2

2

Edgecut = 4*2=8, Volume = 1 + 4 = 5

Communication Volume = 5

(a)

P0 P1

v2[1]

v3[1]

v4[1]

v1[1]

Edgecut = 4*2=8, Volume = 4 + 4 = 8

Communication Volume = 8

2

2

2

2

u1[1]

u2[1]

u3[1]

u4[1]

(b)

Fig. 1. Comparison between the edgecut and volume models

approximation of the total communication cost [13]. The actual communication
may be lower and depends on the number of boundary vertices. For this reason
we will focus on the Volume of a partitioning which we define as the total
communication volume required by the partition. This measure is harder to
optimize [13] than the edgecut.

Look at the two different scenarios presented in Figure 1(a) and (b). Let’s
assume vertex u and vertices u1, u2, u3, u4 are assigned to partition P0, while
vertices v1, v2, v3, v4 are assigned to partition P1. We have noted the communi-
cation weights of every vertex in square brackets in the figure (i.e., c(ui) = 1
and c(vi) = 1 for all i). If the edgecut model was used, each one of the cut edges
would have an edge weight of 2, as each one of the incident vertices to the edge
has communication size of 1. Both of the partitionings presented in Figure 1,
would incur an edgecut of 8. However, in Figure 1(a) the actual communication
volume is only 5, as processor P0 will send a message of size 1 to P1, and P1

will send four messages of size 1 to P0. Only if the volume model is used, will
we have an accurate estimate of the actual communication for both cases.

2.2 Architecture Graph Modeling

Partitioning for a heterogeneous environment requires modeling the underlying
architecture. For our model we use a weighted undirected graph A = (P, L), that
we call the Architecture Graph. P is the set of graph vertices, and they correspond
to the processors in the system, P = {p1, . . . , pp}, p = |P |. The weights w∗(·)
associated with the architecture graph vertices represent the processing cost per
unit of computation. L is the set of edges in the graph, and they represent
communication links between processors. Each communication link l(pi, pj) is
associated with a graph edge weight e∗(pi, pj) that represents the communication
cost per unit of communication between processors pi and pj .

If two processors are not ”directly” connected, and the communication cost
incurred between them is needed, we sum the squares of the weights of the

Architecture Aware Partitioning Algorithms 45

shortest path between them. This is called a quadratic path length (QPL). In [22]
it is shown that a linear path length (LPL) does not perform as well as the QPL.
The insight is that LPL does not sufficiently penalize for cut edges across links
that suffer from slower communication capabilities.

For our model we assume that communication in either direction across a
given link is the same, therefore e∗(pi, pj) = e∗(pj , pi), for i, j = 1, . . . , p. We
also assume that e∗(pi, pi) = 0, as the cost for any given processor to retrieve
information from itself is incorporated in its computational cost w∗(pi).

Although the existing heterogeneous partitioning algorithms assume a com-
plete weighted architecture graph, we find that this approach is not scalable and
therefore avoid it. We provide more details in Section 4.

3 Metrics Definition

Given the proposed models for the computational graph and the architecture
graph, we now define several metrics that will be used in our partitioning algo-
rithms.

Computational Cost. This first metric is the cost a processor pi will incur to
perform computations, over all its assigned portion of vertices Vi:

CompCostVi
pi

= w∗(pi) ×
∑

v∈Vi

w(v)

The computational cost reflects the time needed by a certain processor to process
the vertices assigned to it.

Communication Cost. This metric is the cost a processor pi will incur for
communicating, sending and receiving, any necessary information.

Each partition can distinguish between three types of vertices: (i) interior (lo-
cal) vertices, those being adjacent only with local vertices, (ii) local interface
vertices, those being adjacent both with local and non–local vertices, and (iii)
external interface nodes, those vertices that belong to other partitions but are
coupled with vertices that are assigned to the local partition. In the context of a
parallel application, communication is performed only due to the internal and ex-
ternal interface vertices. Specifically, vertices that belong to category 2 will need
to be sent to the corresponding neighboring processors, and vertices belonging
to category 3 will need to be received from their hosting processor/partition.

The cost that a processor pi will incur for communicating any information
associated to its assigned portion of the vertices Vi of the computational graph:

CommCostVi
pi

=
∑

v∈Vi

⎛

⎝
∑

P (w),w∈adj(v)

e∗(pi, P (w)) × c(v)

⎞

⎠ +

∑

v∈Vi

⎛

⎝
∑

w∈adj(v)

e∗(pi, P (w)) × c(w)

⎞

⎠

46 I. Moulitsas and G. Karypis

where adj(v) indicates the vertices adjacent to vertex v, and P (w) is the proces-
sor/partition a vertex w is assigned to. In the above equation, please note that
no communication links are double counted.

Processor Elapse Time. For every processor pi, its elapse time (ElTime) is
the time it spends on computations plus the time it spends on communications.
Therefore, using the above definitions, the elapse time of processor pi is:

ElapseT imeVi
pi

= CompCostVi
pi

+ CommCostVi
pi

Processor Overall Elapse Time. By summing up the elapse times of all
individual processors, we have an estimate of the overall time (SumElTime)
that all processors will be occupied:

TotalElapseT ime =
∑

pi∈P

ElapseT imeVi
pi

Application Elapse Time. The actual run time of the parallel application
(MaxElTime) will be determined by that processor that needs the most time
to complete. Therefore, no matter how good the quality of a partitioning is, its
overall performance is driven by its ”worst” partition:

ElapseT ime = max
pi∈P

{ElapseT imeVi
pi

}

4 Framework for Architecture-Aware Partitioning

One of the key ideas of our architecture-aware partitioning algorithms is that
they follow the two-phase approach. The purpose of the first phase is to focus
entirely on the computational and memory resources of each processor and com-
pute a problem decomposition that balances the demands on these resources
across the different processors. The purpose of the second phase is to take into
account the interconnection network characteristics (and its potential hetero-
geneity) and modify this partitioning accordingly so that it further optimizes
the final problem decomposition. We will refer to this as the predictor-corrector
approach, since the purpose of the second phase can be thought of as correct-
ing the decomposition computed by the first phase. The motivation behind this
approach is that it allows us to leverage existing high-quality partitioning algo-
rithms for achieving the first phase, which even though in the context of network
heterogeneity they tend to produce suboptimal partitionings, these partitionings
are not arbitrarily poor. As a result, these partitionings can be used as building
blocks for constructing good architecture-aware partitionings.

In all of our algorithms, the partitioning for the first phase is computed us-
ing the kvmetis algorithm from the MeTiS [17] library. This algorithm computes
a p-way partitioning that takes into account the resource capabilities of each

Architecture Aware Partitioning Algorithms 47

processor and minimizes the total communication volume. The partitioning for
the second phase is computed by utilizing a randomized greedy refinement al-
gorithm (similar to those used in MeTiS’s p-way partitioning algorithms) that
moves vertices between partitions as long as such moves optimize the quality of
the resulting decomposition.

We used two different approaches to assess the quality of the architecture-
aware partitioning. The first is based on the maximum communication volume
and the second is based on the application elapsed time. This leads to two differ-
ent objectives functions that drive the refinement routines of the second phase.
The first objective function tries to minimize the maximum communication vol-
ume while keeping the computational load proportional to the computational
power of each processor. The second objective function couples the communica-
tion and computational requirements and tries to directly minimize the appli-
cation elapsed time (i.e., the maximum elapsed time across the p processors).
Note that both of these formulations attempt to compute decompositions that
will be balanced. However, they use a different notion of “balance”. The first
treats computation and communication as two different phases and attempts to
balance them individually, whereas the second one treats them in a unified way
and attempts to balance them in a coupled fashion.

Our discussion so far assumed that each processor has full information about
the communication cost associated with sending data between each pair of pro-
cessors (i.e., e∗(pi, pj)). This is required in order to properly compute either the
maximum communication volume or the application elapsed time. If the number
of processors is small, this is not a major drawback, as the cost associated with
determining and storing these values is rather small. However, for large number
of processors, such an approach creates a number of problems. First, if we need
to have accurate estimates of these costs, these values need to be determined dur-
ing the execution of the partitioning algorithm (e.g., by using a program to send
messages between all pairs of processors to explicitly measure them). This will
increase the time required by the partitioning algorithm and impose a quadratic
memory complexity, which in some cases can be the determining factor of the
scalability of these algorithms. Second, if we rely on a network topology model
to infer some of these communication costs, then we introduce a level of approxi-
mation in our models, which their inherent errors may nullify any improvements
that can potentially be achieved by architecture-aware partitionings.

To overcome this problem, we augmented the maximum volume- and applica-
tion elapsed time-based formulations to operate on a sparse representation of the
architecture graph. The idea behind these formulations is to constraint the refine-
ment algorithms of the second phase so that not to create decompositions that
require communication between any additional pairs of processors beyond those
required by the first phase decomposition. By imposing this addition constraint,
then our two-phase algorithm needs to only estimate the communication costs
associated with the pairs of communicating processors of the first phase, and use
those to accurate evaluate the maximum communication volume and application
elapsed time objectives. Since the first-phase decomposition was obtained using

48 I. Moulitsas and G. Karypis

state-of-the-art graph partitioning algorithms, the pairs of processors that need
to communicate is rather small and independent of the number of processors in
the system. On the average, each subdomain will need to communication with
a constant number of other subdomains. This greatly reduces the memory and
time complexity associated with constructing the architectural graph, and leads
to scalable architecture-aware partitioning algorithms.

In summary, using the above predictor-corrector framework, we developed four
different architecture-aware partitioning algorithms that differ on the objective
function that they use (maximum communication volume or application elapsed
time) and whether or not they use a dense or a sparse architectural graph. We
will refer to these algorithms using the names VolNS (maximum volume, non-
sparse), VolS (maximum volume, sparse), ElTNS (elapsed time, non-sparse), and
ElTS (elapsed time, sparse).

5 Experimental Results

We evaluated the performance of our algorithms using a wide variety of graphs
and architecture topologies. The characteristics of the computation graphs are
presented in Table 1. The size of these graphs ranged from 14K to 1.1M vertices.

The architecture graphs we used are presented in Figure 2. Figure 2(a) presents
a one dimensional array. Figure 2(b) is a two dimensional array. Figure 2(c)
presents an 8–node, 32–processor cluster. Each node has four tightly connected
processors, and a fast interconnection network among its 4 processors. Communi-
cation between different nodes is slower Finally, Figure 2(d) shows a typical grid
architecture. The top and bottom part may each be physically located in the same
geographical location and each is a metacomputer. The intra-communication
across the two parts is slower than the inter-communication locally for each one.

5.1 Quality of the Results

We compared the characteristics of the partitionings produced by the four algo-
rithms described in Section 4 by looking at four performance metrics: maximum
elapsed time (i.e., application elapsed time), sum of elapsed time over all proces-
sors, (total) edgecut, and total communication volume. Due to space constraints,

Table 1. Characteristics of the test data sets

Name # Vertices # Edges Description
1 144 144, 649 1, 074, 393 Graph corresponding to a 3D FEM mesh of a parafoil
2 auto 448, 695 3, 314, 611 Graph corresponding to a 3D FEM mesh of GM’s Saturn
3 brack2 62, 631 366, 559 Graph corresponding to a 3D FEM mesh of a bracket
4 cylinder93 45, 594 1, 786, 725 Graph of a 3D stiffness matrix
5 f16 1, 124, 648 7, 625, 318 Graph corresponding to a 3D FEM mesh of an F16 wing
6 f22 428, 748 3, 055, 361 Graph corresponding to a 3D FEM mesh of an F22 wing
7 finan512 74, 752 261, 120 Graph of a stochastic programming matrix

for financial portofolio optimization
8 inpro1 46, 949 1, 117, 809 Graph corresponding to a 3D stiffness matrix
9 m6n 94, 493 666, 569 Graph corresponding to a 3D FEM mesh of an M6 wing

Architecture Aware Partitioning Algorithms 49

61841 2382420221

(a)

1 2 3 4

5678

9 10 11 12

1415 3161

21222324

17 18 19

25 26 27 28

20

29303132

1

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18

19

2022

23

24

21

25

26

27

28

29

30

31

32

1

2

3

456

7

8

9

10

11

12 14

15

13

16 17

18

19

20

21

22

23

24

25

26

28

27

29 32

30 31

)d()c()b(

Fig. 2. (a) Arch32 1: 1D Array Processor Graph, (b) Arch32 2: 2D Array Processor
Graph, (c) Arch32 3: Cluster of 8 compute nodes, (d) Arch32 4: Metacomputer

for each one of the architectures and algorithms, we report the average of these
metrics over the nine graphs. These results are summarized in Figure 3.

From these results we can see that all four proposed algorithms lead to de-
compositions that have a lower application elapsed time than those computed
by kvmetis (Figure 3(a)). This is true for both the maximum volume- and the
application elapsed time-based formulations. These results show that non triv-
ial reductions (10%–25%) in the applications elapsed time can be obtained by
explicitly modeling and optimizing the communication characteristics of the ar-
chitecture and problem. Comparing the two different objective functions, we see
that the one that explicitly minimizes the application elapsed time leads to con-
sistently better results than the one that just tries to minimize the maximum
volume. This is not surprising, as the former is capable of better trading com-
munication and computational costs towards the goal of reducing the maximum
elapsed time. The results comparing the sum of the elapsed times over all pro-
cessors (Figure 3(b)) provide some additional insights on the type of solutions
produced by the two objective functions. In general, the volume-based objec-
tive function achieves lower values than those achieved by its elapsed time-based
counterpart. This suggests that the dramatic improvements at the application
elapsed time (i.e., maximum elapsed time) come at the expense of uniformly
increasing the amount of time spent by all the processors.

Comparing the edgecut and volume of the resulting partitions (Figures 3(c)
and(d)), we see that in general, the architecture-aware algorithms produced de-
compositions that have higher edgecuts than those produced by kvmetis, but
lower communication volumes. This is not surprising, as the refinement algo-
rithms used in the corrector phase, entirely ignore the edgecut and focus either
on the maximum volume or the application elapsed time. These two objective
functions better correlate with the total volume and as the results suggest, in

50 I. Moulitsas and G. Karypis

Max El Time: New .vs. KVMETIS

0

0.2

0.4

0.6

0.8

1

Arch32_1 Arch32_2 Arch32_3 Arch32_4

Vol NS Vol S ElT NS ElT S

Sum El Time: New .vs. KVMETIS

0

0.2

0.4

0.6

0.8

1

Arch32_1 Arch32_2 Arch32_3 Arch32_4

Vol NS Vol S ElT NS ElT S

(a) (b)

Edgecut: New .vs. KVMETIS

0

0.2

0.4

0.6

0.8

1

1.2

Arch32_1 Arch32_2 Arch32_3 Arch32_4

Vol NS Vol S ElT NS ElT S

Volume: New .vs. KVMETIS

0

0.2

0.4

0.6

0.8

1

1.2

Arch32_1 Arch32_2 Arch32_3 Arch32_4

Vol NS Vol S ElT NS ElT S

(c) (d)

Fig. 3. Characteristics of the induced 32-way partitioning for Arch32 1, Arch32 2,
Arch32 3, and Arch32 4

some cases it is at odds with minimizing the edgecut. This is also an indirect
verification of the argument that eventhough the edgecut gives an indication of
the communication volume, it is by no means an accurate measure of it. Indeed,
by looking at Figure 3(c) we would have been misled as to say that our algo-
rithms would have higher communication needs, which is not true as shown in
Figure 3(d).

5.2 Comparison between Sparse and Non-sparse Algorithms

As discussed in Section 4, one of the main contributions of this work is that it
also proposes sparse algorithms that are more scalable compared to the non-
sparse refinement ones. Of course there lies a question regarding how much we
have sacrificed in quality in order to achieve this scalability.

In Figure 4 we compare the sparse volume refinement algorithm with its non-
sparse counterpart, and the sparse elapse time refinement algorithm with the
non-sparse one. We have taken the ratio of the application elapse times of the
sparse algorithms, over the application elapse times of the non-sparse ones. We
have a total of 72 comparisons. We can see that in only 5 of the cases, did the

Architecture Aware Partitioning Algorithms 51

Max El Time Sparse .vs. Non-sparse Arch 32_1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

14
4

au
to

bra
ck

2

cy
lin

de
r93 f16 f22

fin
an

51
2

inp
ro1 m6n

Data Sets

Vol ElT

Max El Time Sparse .vs. Non-sparse Arch 32_2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

14
4

au
to

bra
ck

2

cy
lin

de
r93 f16 f22

fin
an

51
2

inp
ro1 m6n

Data Sets

Vol ElT

(a) (b)

Max El Time Sparse .vs. Non-sparse Arch 32_3

0

0.2

0.4

0.6

0.8

1

1.2

14
4

au
to

bra
ck

2

cy
lin

de
r93 f16 f22

fin
an

51
2

inp
ro1 m6n

Data Sets

Vol ElT

Max El Time Sparse .vs. Non-sparse Arch 32_4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

14
4

au
to

bra
ck

2

cy
lin

de
r93 f16 f22

fin
an

51
2

inp
ro1 m6n

Data Sets

Vol ElT

(c) (d)

Fig. 4. Comparison of the sparse and non sparse approaches

sparse scalable algorithms produce worse results. In the remaining 67 cases, the
qualities were comparable, and therefore we did not see any degradation.

6 Conclusions

The field of heterogeneous graph partitioning is a very new field and there is a
lot of room for improvement. However the approaches described above represent
a scalable solution that merits further investigation and development. We were
able to produce partitions of high quality that can correctly model architecture
characteristics and address the requirements of upcoming technologies.

References

1. Barnard, S.T.: Pmrsb: Parallel multilevel recursive spectral bisection. In: Super-
computing 1995 (1995)

2. Barnard, S.T., Simon, H.: A parallel implementation of multilevel recursive spectral
bisection for application to adaptive unstructured meshes. In: Proceedings of the
seventh SIAM conference on Parallel Processing for Scientific Computing, pp. 627–
632 (1995)

52 I. Moulitsas and G. Karypis

3. Bui, T., Jones, C.: A heuristic for reducing fill in sparse matrix factorization. In:
6th SIAM Conf. Parallel Processing for Scientific Computing, pp. 445–452 (1993)

4. Chapin, S.J., Katramatos, D., Karpovich, J., Grimshaw, A.S.: The Legion resource
management system. In: Feitelson, D.G., Rudolph, L. (eds.) Job Scheduling Strate-
gies for Parallel Processing, pp. 162–178. Springer, Heidelberg (1999)

5. Diniz, P., Plimpton, S., Hendrickson, B., Leland, R.: Parallel algorithms for dy-
namically partitioning unstructured grids. In: Proceedings of the seventh SIAM
conference on Parallel Processing for Scientific Computing, pp. 615–620 (1995)

6. Faik, J., Gervasio, L.G., Flaherty, J.E., Chang, J., Teresco, J.D., Boman, E.G.,
Devine, K.D.: A model for resource-aware load balancing on heterogeneous clusters.
Technical Report CS-03-03, Williams College Department of Computer Science
(2003), Submitted to HCW, IPDPS 2004

7. Fiduccia, C.M., Mattheyses, R.M.: A linear time heuristic for improving network
partitions. In: Proc. 19th IEEE Design Automation Conference, pp. 175–181 (1982)

8. Message Passing Interface Forum. MPI: A message-passing interface standard.
Technical Report UT-CS-94-230 (1994)

9. Foster, I., Kesselman, C.: Globus: A metacomputing infrastructure toolkit. The
International Journal of Supercomputer Applications and High Performance Com-
puting 11(2), 115–128 (1997)

10. Gilbert, J.R., Miller, G.L., Teng, S.-H.: Geometric mesh partitioning: Implemen-
tation and experiments. In: Proceedings of International Parallel Processing Sym-
posium (1995)

11. Goehring, T., Saad, Y.: Heuristic algorithms for automatic graph partitioning.
Technical report, Department of Computer Science, University of Minnesota, Min-
neapolis (1994)

12. Heath, M.T., Raghavan, P.: A Cartesian parallel nested dissection algorithm. SIAM
Journal of Matrix Analysis and Applications 16(1), 235–253 (1995)

13. Hendrickson, B.: Graph partitioning and parallel solvers: Has the emperor no
clothes (extended abstract). In: Workshop on Parallel Algorithms for Irregularly
Structured Problems, pp. 218–225 (1998)

14. Hendrickson, B., Leland, R.: An improved spectral graph partitioning algorithm for
mapping parallel computations. Technical Report SAND92-1460, Sandia National
Laboratories (1992)

15. Hendrickson, B., Leland, R.: A multilevel algorithm for partitioning graphs. Tech-
nical Report SAND93-1301, Sandia National Laboratories (1993)

16. Huang, S., Aubanel, E.E., Bhavsar, V.C.: Mesh partitioners for computational
grids: A comparison. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P.
(eds.) ICCSA 2003. LNCS, vol. 2669, pp. 60–68. Springer, Heidelberg (2003)

17. Karypis, G., Kumar, V.: METIS 4.0: Unstructured graph partitioning and sparse
matrix ordering system. Technical report, Department of Computer Science, Uni-
versity of Minnesota (1998), http://www.cs.umn.edu/∼metis

18. Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs.
Journal of Parallel and Distributed Computing 48(1), 96–129 (1998),
http://www.cs.umn.edu/∼karypis

19. Karypis, G., Kumar, V.: A fast and highly quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing 20(1) (1999); A short
version appears In: Intl. Conf. on Parallel Processing 1995,
http://www.cs.umn.edu/∼karypis

20. Schloegel, K., Karypis, G., Kumar, V.: Graph partitioning for high performance
scientific simulations. In: Dongarra, J., et al. (eds.) CRPC Parallel Computing
Handbook, Morgan Kaufmann, San Francisco (2000)

http://www.cs.umn.edu/~metis
http://www.cs.umn.edu/~karypis
http://www.cs.umn.edu/~karypis

Architecture Aware Partitioning Algorithms 53

21. Kumar, R.B.S., Das, S.K.: Graph partitioning for parallel applications in hetero-
geneous grid environments. In: Proceedings of the 2002 International Parallel and
Distributed Processing Symposium (2002)

22. Walshaw, C., Cross, M.: Multilevel Mesh Partitioning for Heterogeneous Commu-
nication Networks. Future Generation Comput. Syst. 17(5), 601–623 (2001) (orig-
inally published as Univ. Greenwich Tech. Rep. 00/IM/57)

23. Walshaw, C., Cross, M.: Parallel optimisation algorithms for multilevel mesh par-
titioning. Parallel Computing 26(12), 1635–1660 (2000)

24. Wanschoor, R., Aubanel, E.: Partitioning and mapping of mesh-based applications
onto computational grids. In: GRID 2004: Proceedings of the Fifth IEEE/ACM
International Workshop on Grid Computing (GRID 2004), Washington, DC, USA,
pp. 156–162. IEEE Computer Society, Los Alamitos (2004)

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 54–57, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Simple and Efficient Fault-Tolerant Adaptive
Routing Algorithm for Meshes

Arash Shamaei1,2, Abbas Nayebi1,3, and Hamid Sarbazi-Azad1,3

1 IPM School of Computer Science
2 Payeme Noor University

3 Sharif University of Technology, Tehran, Iran
shamaei@ipm.ir, nayebi@ce.sharif.edu, azad@{ipm.ir,sharif.ir}

Abstract. The planar-adaptive routing algorithm is a simple method to enhance
wormhole routing algorithms for fault-tolerance in meshes but it cannot handle
faults on the boundaries of mesh without excessive loss of performance. In this
paper, we show that this algorithm can further be improved using a flag bit in-
troduced for guiding misrouted messages. So, the proposed algorithm can be
used to route messages when fault regions touch the boundaries of the mesh.
We also show that our scheme does not lead to diminish the performance of the
network and only three virtual channels per physical channels are sufficient for
tolerating multiple boundary faulty regions.

1 Introduction

Communication between processing nodes in mulicomputer is performed by message
passing mechanism through the interconnection network. The nodes in the interconnec-
tion network, named routers, support a certain number of input and output channels.
Links between routers connect output channels of one router to input channels of its
neighboring routers, defining the network topology. The most popular topologies are
orthogonal structures, e.g. n-dimensional meshes and k-ary n-cubes. A message is di-
vided into packets and a packet is divided into flow control digits (flits). The flits are
transmitted through the network one after another in a pipeline fashion called wormhole
switching technique [1]. A flit of the message is designated as the header flit, which
leads the message through the network. When the header flit is blocked due to lack of
output channels, all of the flits wait at their current nodes for available channels.

A routing algorithm specifies how packets choose the path to their destinations.
There are two types of routing algorithms: deterministic and adaptive. In deterministic
routing only one path is determined through source to destination, while adaptive
routing algorithms allow multiple paths. Although deterministic routing is generally
simple and fast, but it cannot tolerate even single node or link failure. Since adaptive
routing algorithms can use multiple paths from source to destination, it is appropriate
to have fault-tolerant routing algorithms based on adaptive routing. Adaptive routing
usually requires additional network resources. To avoid using extra physical channels,
a physical channel can be shared by several virtual channels. Multiple buffers per
each physical channel are used and share the bandwidth among several packets in

 A Simple and Efficient Fault-Tolerant Adaptive Routing Algorithm for Meshes 55

time multiplex. In adaptive routing, deadlocks are usually avoided by using virtual
channels and by separating network topology into several logical subclasses [2].

A well-known adaptive routing algorithm, planar-adaptive routing algorithm, was
presented by Chen and Kim [3]. Their method uses three virtual channels per physical
channel to handle fault blocks in n-dimensional meshes. Also planar-adaptive routing
is very efficient and simple to use, but it cannot handle faults on the boundaries of
mesh without excessive loss of computational power. For example, to handle a node
fault in the tip row of a 2D mesh, all other nodes in that row must be labeled faulty. In
this paper, we address the issue of improving planar-adaptive routing algorithm in
order to handle boundary fault situation.

2 Planar-Adaptive Routing

The idea in planar-adaptive routing is to provide limited adaptivity by routing adap-
tively in a series of two-dimensional planes. Planar-adaptive routing restricts packets
to be routed in plane A0, then moving to plane A1 and so on. Each adaptive plane Ai
involves only two dimensions; di and di+1, while the order of dimensions is arbitrary.
Within each adaptive plane, packets route adaptively with respect to first and second
dimensions by choosing any channel that take it closer to the destination. In order to
prevent deadlock, the traffic is divided into two classes: packets which need to in-
crease (increasing) and decrease (decreasing) their di address. The virtual channels in
Ai are divided into increasing and decreasing virtual networks which are completely
disjoint. Routing in adaptive plane Ai reduces the distance in di to zero. If in plane Ai,
the di+1 distance is reduced to zero first, routing continues in di exclusively, until the di
distance is reduced to zero.

Planar-adaptive networks can be augmented with misrouting around fault blocks to
support fault-tolerance. The basic idea is to use the flexibility of the adaptive routing
algorithm to circumvent any faulty channels. It assumes that both node and link fault
model are detected. If faulty regions are not naturally convex, healthy nodes and
channels are marked as faulty until the regions become convex. In fault-tolerant pla-
nar-adaptive routing, packets route in adaptive plane A0 to An-1. For each adaptive
plane Ai, if packets are not blocked by fault, route as in the fault-free case. If packets
are blocked by fault only in one dimension, then routing continues in another dimen-
sion. If packets are blocked by a fault in di, and the di+1 distance has already been
reduced to zero, it is necessary to misroute. Misrouting around faulty region continues
until di+1 distance is reduced to zero again.

3 Improving the Fault-Tolerant Planar-Adaptive Routing

In this section, we present a scheme to handle faulty regions with boundary nodes.
For the sake of clarity, we consider two dimensional meshes, while extensions to n-
dimensional meshes can be done similarly. It is sufficient to apply the introducing
method in each adaptive plane Ai.

To do so, we use the concept of f-chain similar to [4]. F-chain is a set of fault-free
nodes adjacent to faulty regions which includes nodes on the boundary of the

56 A. Shamaei, A. Nayebi, and H. Sarbazi-Azad

network. Each boundary node that resides on the f-chain is called end-node. So each
f-chain has two end-nodes.

A one-bit flag is maintained by each node on the f-chains to facilitate fault-tolerant
routing. After f-chains are constructed for the boundary fault regions, the following
flag setting procedure is executed by each node on the f-chains to set the associated
flag bit:

1. Initially, a node sets its flag to 0.
2. Each end-node of f-chain sets its flag to 1 and sends a set-1 message to its neighbor

that is on the same f-chain.
3. If a node receives a set-1 message, sets its flag to 1. If the set-1 message is sent to

it from a neighbor on dimension D and its neighbor on the opposite direction of the
same dimension is also on the same f-chain, forward the set-1 message. Otherwise,
consume the set-1 message.

After running the above procedure, some flag bits of some nodes residing on f-chains
will change to 1 as shown in figure 1..Each node on the f-chains (except boundary
nodes) saves the direction from which the set-1 message is received. This direction is
called as forbidden direction.

Fig. 1. The status of flag bits in f-chain

The modified fault-tolerant planar-adaptive routing acts as the preceding algorithm
with the following changes when normal message encounters a node with flag bit 1:

• If there is only one optimal channel (the channel that leads a message to its destina-
tion on the optimal path) and it is faulty, the message misroutes around faulty re-
gion in the direction opposite to the forbidden direction. This case is shown in
Figure 2a.

• If there are two optimal channels that one of them is faulty and the other one is in
the same direction as the forbidden direction, the message misroutes around faulty
region in the direction opposite to the forbidden direction as shown in Figure 2b.

• If there are two optimal channels that both of them are nonfaulty and one of them
is in the same direction as the forbidden direction, the message chooses the other
optimal channel as shown in Figure 2c.

We evaluate our method by a continues-time event-based flit-level simulator (Xmula-
tor [5]) which is developed by the authors to achieve various results. Simulations are
performed under various boundary fault regions with different message lengths and
two different size of network to show that performance of the method does not
degrade in contrast to the main method.

 A Simple and Efficient Fault-Tolerant Adaptive Routing Algorithm for Meshes 57

a
b

c

Fig. 2. Circumventing faulty regions when flag bit of node is 1.S: Source D: Destination

4 Conclusion

In this paper, we have presented a method to improve the fault-tolerant planar-
adaptive routing. We used the concept of f-chain for each boundary faulty region of
the network. A one-bit flag was maintained by each node on the f-chains to facilitate
fault-tolerant routing and each node resides on f-chains saved the direction called
forbidden direction. Routing decision was made according to the forbidden direction.
We also showed how the proposed method can improve the performance of the
network by saving many nodes wasted in the original routing algorithm.

References

1. Dally, W.J., Seitz, C.L.: Deadlock-free message routing in multiprocessor interconnection
networks. IEEE Trans. Computers 36(5), 547–553 (1987)

2. Duato, J., Yalamanchili, S., Ni, V.: Interconnection Networks, an Engineering Approach.
Morgan Kaufmann Publishers, USA (2003)

3. Chen, A.A., Kim, J.H.: Planar-Adaptive routing: Low-cost adaptive networks for multiproc-
essors. In: Proc. 19th Ann Int’l Symp Computer Architecture, pp. 268–277 (1992)

4. Boppana, R.V., Chalasani, S.: Fault-tolerant wormhole routing algorithms for mesh net-
works. IEEE Trans. Computers 44(7), 848–864 (1995)

5. Nayebi, A., Meraji, S., Shamaei, A., Sarbazi-Azad, H.: XMulator: A Listener-Based Inte-
grated Simulation Platform for Interconnection Networks. In: Asia Int’l Conf. on Modelling
and Simulation, pp. 128–132 (2007)

Deadlock-Free Adaptive Routing in 2D Tori

with a New Turn Model

Dong Xiang�, Qi Wang, and Yi Pan

1 School of Software
Tsinghua University

Beijing 100084, China
2 Dept. of CS,

Tsinghua University
Beijing 100084, China

3 Dept. of CS
Georgia State University
Atlanta, GA 30302, USA

Abstract. A new deadlock-free partially adaptive routing algorithm is
proposed for 2− dimensional (2D) tori with only two virtual channels.
The deadlock avoidance technique is presented based on a new turn
model for 2D tori. In order to avoid cyclic channel dependencies com-
pletely, we propose the new odd-even turn model for 2D tori. The new
model is an improved algorithm of the original turn model, and sets
some constraints for some special turns. As far as we know, there is no
existing algorithm for deadlock-free partially adaptive routing in 2D tori
using only two virtual channels in the literature up to now. Sufficient
simulation results are presented to demonstrate the effectiveness of the
proposed algorithm by comparing with several previous methods.

Keywords: Deadlock avoidance, deadlock-free adaptive routing, odd-
even turn model, torus, turn model.

1 Introduction

Torus-connected networks have been widely used in recent experimental or com-
mercial multicomputers and processor-memory interconnects [1] [7] [9]. The num-
ber of virtual channels for deadlock-free routing and adaptivity provided by the
routing scheme have great impact on performance of a routing algorithm.

Dally [3] presented the sufficient and necessary conditions for deadlock-free
routing in an interconnection network. Sullivan, et al. [11] proposed a deadlock-
free deterministic routing method for tori with two virtual channels. Duato’s

� This work is supported in part by the National Science Foundation of China under
grants 60373009, 60573055 and the Key Fundamental Research grant of School of
Information Science, Tsinghua University from 985 grant of the Education Ministry
under grant SIST3006.

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 58–69, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Deadlock-Free Adaptive Routing in 2D Tori with a New Turn Model 59

protocol [4] presented a fully adaptive deadlock-free routing method by using a
combination of a base routing algorithm and additional adaptive virtual channels.

Linder and Harden [6] proposed a fully adaptive deadlock-free routing algo-
rithm for k-ary n-cubes based on virtual network partitioning. The required
number of virtual channels is O(2n). Puente, et al. [8] proposed novel rout-
ing method for virtual cut-through switched tori, which avoids deadlocks inside
rings established by different dimensions by preventing packets from using the
potentially last free buffer. The T3E [9] is a commercial machine based on the
3-dimensional torus topology. A fully adaptive routing scheme for 3-dimensional
torus network with five virtual channels based a new dimension-order routing
scheme and the Duato’s protocol [4]. A load-balanced, non-minimal adaptive
routing algorithm called GOAL for tori was proposed by Singh and Dally [10]
with three virtual channels.

Glass and Ni [5] proposed an interesting partially adaptive routing algorithm
call turn model to implement deadlock-free routing in meshes. This method
removes cyclic channel dependencies by preventing some turns. The odd-even
turn model proposed by Chiu [2] implements deadlock-free routing for 2D meshes
by restricting the EN and NE turns on even columns and the ES and SE turns
on the odd columns.

In this paper, we introduce a new partially adaptive algorithm for torus net-
works. This algorithm just uses two virtual channel to route the message, and
improves the adaptability. The method is deadlock-free by using the new odd-
even turn model

A new scheme for determination of the direction to route the message along
both dimensions in 2D tori is introduced by using only two virtual channels in
Section 2. A new odd-even turn model is proposed for 2D tori in Section 3. The
new deadlock-free routing adaptive routing algorithm is presented in Section
4. Deadlock-freedom of the proposed routing scheme is presented in Section 5.
Extensive simulation results are presented to compare with the dimension-order
routing algorithm, some partially adaptive routing schemes in Section 6. The
paper is concluded in Section 7.

2 Determination of the Routing Directions in
2-Dimensional Torus Networks

A Deadlock represents each of the packets that occupies some resource and
waits for some other resource, which establish a cyclic dependency [3]. Adap-
tivity presents more flexibility for packet routing by presenting more choices at
each intermediate node. A partially adaptive routing algorithm presents lim-
ited adaptivity at any intermediate nodes [2,5], while a fully adaptive routing
algorithm allows a message to be routed along any possible paths, usually, all
minimum paths [4]. A column is called an even (or odd) column if coordinate of
the column is even (or odd) [2].

We shall present a deadlock avoidance technique for 2D tori with only two
virtual channels. In this paper, two virtual channels are used for each physical

60 D. Xiang, Q. Wang, and Y. Pan

channels. Two directions of a message must be determined when injecting into
the network. Directions of a message can be determined by the procedure as
presented Fig. 1.

The virtual channel assignment scheme can be stated as follows. Let a message
be delivered along dimension x or y in direction + according to the procedure in
Fig. 1, the virtual channel cx,1+ (or cy,1+) must be used if x1 < x2 (or y1 < y2);
otherwise, the virtual channel cx,1+ (or cy,1+) must be used. Let a message be
delivered along dimension x or y in direction − according to the procedure in
Fig. 1, the virtual channel cx,1− (or cy,1−) must be used if x1 > x2 (or y1 > y2);
otherwise, the virtual channel cx,2− (or cy,2−) must be used.

Determine-Route-Direction()
Input: Coordinates of source (x1, y1) and destination (x2, y2).
Output: Determined routing directions.

1. A = x2 − x1, B = y2 − y1;
2. Let A ≥ 0 and B ≥ 0, if A ≥ k/2, B ≥ k/2, dx = −, dy =−; if A < k/2, B ≥ k/2,

dx =+, dy =−; if A ≥ k/2, B < k/2, dx =−, dy =+; if A < k/2, B < k/2, dx =+,
dy =+.

3. Let A ≥ 0 and B < 0, if A ≥ k/2, B ≥ −k/2, dx =−, dy =−; if A < k/2,
B ≥ −k/2, dx =+, dy =−; if A ≥ k/2, B < k/2, dx =−, dy =+; if A < k/2,
B < k/2, dx =+, dy =+.

4. Let A < 0 and B ≥ 0, if A ≤ −k/2, B ≥ k/2, dx =+, dy =−; if A ≤ −k/2,
B < k/2, dx =+, dy =+; if A > −k/2, B ≥ k/2, dx =−, dy =−; if A > −k/2,
B < k/2, dx =−, dy =+.

5. Let A < 0 and B < 0, if A ≤ −k/2, B ≤ −k/2, dx =+, dy =+; if A ≤ −k/2,
B > −k/2, dx =+, dy =−; if A > −k/2, B ≤ −k/2, dx =−, dy =+; if A > −k/2,
B > −k/2, dx =−, dy =−.

Fig. 1. Determination of the routing directions

The procedure in Fig. 1 returns the directions of a message, inside which the
message should be routed. Let A and B be the offsets of the destination (x2, y2)
and source (x1, y1), where A = x2 − x1, and B = y2 − y1. In the procedure as
shown in Fig. 1, dx and dy stand for the directions along dimensions x and y.
Four separate cases are considered: (1) A ≥ 0 and B ≥ 0, (2) A ≥ 0 and B < 0,
(3) A < 0 and B ≥ 0, and (4) A < 0 and B < 0. Let us consider case (4).
The directions dx and dy should be + and +, respectively when A ≤ −k/2 and
B ≤ −k/2, and + and − when A ≤ −k/2 and B < k/2. The directions dx and
dy along dimensions x and y should be − and + when A > −k/2 and B ≤ −k/2,
and they are − and − when A > −k/2 and B > −k/2. Determination of the
directions for other cases is similar.

After determining directions for both dimensions, a message can be delivered
via the given virtual channels. The potential cyclic channel dependencies can be
removed easily. The message is routed via the first virtual channel for a hop along
a dimension if no wraparound channel along the dimension should be traversed

Deadlock-Free Adaptive Routing in 2D Tori with a New Turn Model 61

to reach the destination; otherwise, the message must be delivered via the second
virtual channel if a wraparound link has to be traversed.

There may exist enough cyclic channel dependencies in a 2D torus based on the
above virtual channel assignment scheme. There may exist some potential cyclic
channel dependency in any rectangular structure in the submesh, the rectangular
structure constructed by some links in the submesh and some wraparound links
can also establish some cyclic channel dependency. As for the cycles constructed
by the four boundary wraparound links, cyclic channel dependencies can also be
established. We would like to propose a deadlock-free routing method by using
a new odd-even turn model for 2D tori.

3 Odd-Even Turn Model for 2D Tori

Virtual channel assignment scheme introduced above can easily remove cyclic
channel dependencies produced by the rings along the same dimension. However,
there may still exist some cyclic channel dependencies. In this section, we propose
a new odd-even turn model for 2D tori [2]. These cyclic channel dependencies
are completely removed by using our new odd-even turn model.

Definition 1. A column is called an even (or odd) column if the coordinate of
dimension x of the column is an even (or odd) number; a row is called an even
(or odd) row if the coordinate of dimension y of the row is an even (or odd)
number.

y+

x+

y−

(c) (d)

(b)(a)

odd column

even column

odd row

even row

y−

x−

x−

x+

y+

x−

y+

x+

y− y− y+

x+

x−

Fig. 2. Removal cyclic channel dependencies by a new turn model

62 D. Xiang, Q. Wang, and Y. Pan

As shown in Fig. 2, there can exist clockwise cycles and counter clockwise
cycles. As for a clockwise cycle, an x+ channel turns to a y− channel only at the
odd column; a y− channel turns to an x− channel only at an even column. As
for a counter clockwise cycle, a y+ channel turns to an x− channel only at an
odd row while an x− turns to a y+ channel only at an even row. In this paper,
any channel is in the same row or column as the router it leads to.

Constraining a turn from an x+ channel to a y− channel only at the odd
column and a turn from a y− channel to an x− channel only at an even column
can make more messages staying in the x channels. Therefore, there may exist
traffic conjestion on the x channels. Our method constrains a turn from a y+
channel to an x− channel only at an odd row, and a turn from an x− channel
to a y+ channel only at an even row. Compared with the odd-even turn model
in a 2D mesh, more balanced load can be obtained.

There may exist some extra cyclic channel dependencies contained two adja-
cent wraparound links as shown in Fig. 3. As shown in Fig. 3(a), wraparound
links h and e can establish a cyclic channel dependencies h-e-i-c and h-e-b-c; the
wraparound links g and f can also construct a cyclic channel dependencies g-f -
i-c and g-f -d-c. We would like to introduce some special technique to avoid the
above cyclic channel dependencies. As for the cyclic channel dependencies h-e-i-c
and h-e-b-c, a turn from the wraparound link h along direction y+ to another
wraparound link e along direction x+ uses virtual channel cx,1+ instead of cx,2+,
where cx,2+ channel should be used according to the virtual channel assignment
scheme. Cyclic channel dependencies g-f -i-c and g-f -d-c can be avoided for the
turn from the wraparound link g along direction x+ to another wraparound link
f along direction y+ uses virtual channel cy,1+ instead of cy,2+.

The following two rules can be used to implement the new odd-even turn
model in a 2D torus: (1) A message turns from an x+ channel to a y− channel
only at the odd columns, and a message turns from a y− channel to an x−
channel only at even columns. and (2) A message turns from a y+ channel to
an x− channel only at odd rows, and a message turns from an x+ channel to a
y+ channel only at the even rows.

d

c

 hf

i

e

g g
b

a

b

da
e

c

f

i

along directions x+ and y+(a) (b) along directions x+ and y−

h

Fig. 3. Avoidance of cyclic channel dependencies with two adjacent wraparound links

Deadlock-Free Adaptive Routing in 2D Tori with a New Turn Model 63

Deadlock-free-route-in-2D-torus()
Input: Coordinates of the source (x1, y1) and the destination (x2, y2).
Output: A selected output channel.
{
1. Call Determine-Route-Direction();
2. if dx =+, and dy =+, route1();
3. if dx =+, and dy =−, route2();
4. if dx =−, and dy =+, route3();
5. if dx =−, and dy =−, route4().

}

Fig. 4. Deadlock-free adaptive routing in 2D tori

As shown in Fig. 2(a), a turn from an x+ channel to a y− channel happens
only at the odd columns, and a turn from a y− channel to an x− channel only
happens at the even columns when Rule 1 meets, which removes the clockwise
cyclic channel dependencies. When Rule 2 is satisfied, the counter clockwise
cyclic channel dependencies as presented in Fig. 2(b) can be removed.

4 Routing Algorithm

The procedure Determine-Route-Direction() returns the parameters dx and dy

for the message classification given a pair of the source (x1, y1) and destination
(x2, y2). The algorithm calls the routing procedures route1(), route2(), route3(),
and route4() when the message falls into the message classes dx =+ and dy =+,
dx =+ and dy =−, dx =− and dy+, and dx =− and dy =−, respectively.

Let A and B be offsets along dimensions x and y. The procedure in Fig. 5
presents the details to deliver a message in message class dx =− and dy =−.
There exist two kinds of constrained turns for this message class as shown in
Figs. 2(a) and (b). Potential cyclic channel dependencies produced by the bound-
ary wraparound channels as presented in Fig. 2(c) and (d), and the potential
cyclic channel dependencies as presented in Fig. 3 should also be removed.

Let A < 0 and B < 0, and a message occupy a y− channel in an even row,
the next hop can be one of cx,1− and cy,1− channels because it does not need to
traverse a wraparound link along dimensions x and y. Otherwise, the message
selects cy,1− as the next hop if it is in an odd row. The message selects one of
cx,1− and cy,1− as the next hop if it occupies an x− channel in an even column;
the message is delivered via channel cx,1− if it occupies an x− channel in an
odd column.

Let A < 0 and B > 0, the message must traverse a wraparound link along
dimension y. One of cx,2− and cy,1− can be the next hop if the message occupies
an x− channel in an even row; let the message occupy an x− channel in an odd
row, the channel cy,1− should be the next hop. Assume the message occupies
a y− channel in an even column, one of cx,2− and cy,1+ can be the next hop;

64 D. Xiang, Q. Wang, and Y. Pan

route4()
Input: The current node (x1, y1) and destination (x2, y2), A = x2 − x1, B = y2 − y1.
Output: A selected output channel.

1. Let A < 0 and B < 0, channel:= select(cx,1−, cy,1−) if the message occupies a y−
channel in an even row; channel:= cy,1− if the message occupies a y− channel in an
odd row; channel:= select(cx,1−, cy,1−) if the message occupies an x− channel in
an even column; otherwise, channel:= cx,1− if the message occupies an x− channel
in an odd column.

2. Let A < 0 and B > 0, channel:= select(cx,1−, cy,2−) if the message occupies a y−
channel in an even row; channel:= cy,2− if the message occupies a y− channel in
an odd row; channel:= select(cx,1−, cy,2−) if the message occupies an x− channel
in an even column; otherwise, channel := cx,1− if the message occupies an x−
channel in an odd column.

3. Let A > 0 and B < 0, channel:= select(cx,2−, cy,1−) if the message occupies an x−
channel in an even row; channel:= cy,1− if the message occupies an x− channel in
an odd row; channel:= select(cx,2−, cy,1+) if the message occupies a y− channel in
an even column; otherwise, channel := cx,2− if the message occupies a y− channel
in an odd column.

4. Let A > 0 and B > 0, if the message occupies a boundary wraparound link x−,
channel:= select(cx,2−, cy,1−); if the message occupies a boundary wraparound link
y−, channel := select(cx,1−, cy,2−); if the message occupies an x− link in an odd
column, channel:= select(cx,2−,cy,2−); channel:= cx,2− if the message occupies a
channel in an even column; if the message occupies an y− channel in an even row,
channel:= select(cx,2−,cy,2−); channel:= cy,2− if the message occupies a link in
an odd row.

5. If A = 0, channel := cy,2− if B > 0, and channel := cy,1− if B < 0; if B = 0,
channel := cx,2− if A > 0, and channel := cx,1− if A < 0; return internal channel
if A = 0, B = 0.

Fig. 5. Deadlock-free adaptive routing for a message along directions x− and y−

let the message occupy a y− channel in an odd column, cx,1− must be the next
hop. The situation for A > 0 and B < 0 is similar, where a wraparound link
along dimension x must be traversed.

Let A > 0 and B > 0, the message must traverse a wraparound link along
both dimensions. Therefore, potential cyclic channel dependencies that contain
two adjacent boundary wraparound links must be removed, which also include
the ones as shown in Figs. 2(c) and (d). If a message occupies a boundary
wraparound link x−, one of the channels cx,2− and cy,1− should be the next
hop, while one of cx,1− and cy,2− can be the next hop if the message occupies
a boundary wraparound link y−. Let the message occupies an x− link in an
odd column, one of the channels cx,2− and cy,2− should be the next hop; oth-
erwise, cx,2− should be the next hop if the message occupies a channel in an
even column. Let the message occupies an y− channel in an even row, one of
the channels cx,2− and cy,2− should be the next hop; otherwise, cy,2− must be
the next channel if the message occupies a channel in an odd row. Deadlock-free

Deadlock-Free Adaptive Routing in 2D Tori with a New Turn Model 65

adaptive routing for other two classes when dx =− and dy =−, and dx =+ and
dy =− are similar.

5 Deadlock-Freedom Proof of the Deadlock Avoidance
Technique in 2-Dimensional Tori

We would like to prove that a combination of the proposed virtual channel
assignment scheme and new turn model truly presents a deadlock-free routing
scheme for 2D tori. We need to prove that no cyclic channel dependency can be
established based on the proposed adaptive deadlock-free routing algorithm.

Lemma 1. There exists no cyclic channel dependency on the boundary
wraparound links of the 2-dimensional torus based on the virtual channel as-
signment scheme and the routing algorithm.

Proof: Fig. 6(a) presents the cyclic boundary wraparound links. We would like
to show that the cycles does not establish any cyclic channel dependency.

As shown in Figs. 6(a) and (b), four messages can form cyclic channel depen-
dencies. All channel dependencies can be illustrated as follows according to the
routing algorithm introduced in Figs. 4 and 5: m1 occupies cy,2− and requests
cx,1−, m2 occupies cx,2− and requests cy,1+, m3 occupies cy,2+ and requests
cx,1+, and m4 occupies cx,2+ and requests cy,1−. As shown Fig. 6(b), no cyclic
channel dependency can be established. ��

Lemma 2. There exists no cyclic channel dependency in any ring along the
same dimension based on the virtual channel assignment scheme.

(0,k−1)

y− y+

x+

x−

c −y,1

c +x,1 c +

c +

c −

x,2

c +y,1

y,2

x,2

c −x,1

c −y,2

(k−1,k−1) : a node in the network
: a virtual channel

(k−1,0)(0,0)

(a) (b)

Fig. 6. Acyclic channel dependencies among the boundary wraparound links

m

c c c

cm

k−1x,1 x,1

1 m2

c x,2

k

mi−1 i−1
cx,2

m

i k−2

mk−1

x,2

i

x,10 1 2

Fig. 7. Acyclic channel dependency of a ring

66 D. Xiang, Q. Wang, and Y. Pan

(b)(a)

b

a

c

d da

b c

y− y+

x+

x−

y+y−

Fig. 8. Acyclic channel dependencies for directed cycles with wraparound links

Proof: Without loss of generality, let us consider the x+ rings as presented in
Fig. 7. Situations for the x− rings are similar. Two message classes (1) dx =+
and dy =+, and (2) dx =+ and dy =− contain x+ rings. Both message classes
use the same virtual channels to deliver a message along the x+ hops. That is,
cx,1+ is used for a message that does not need to traverse a wraparound channel,
and cx,2+ is used for messages that need to traverse a wraparound channel.

As shown in Fig. 7, the message m1 occupies the virtual channel cx,1+ of link
(0, 1). There exists a virtual channel cx,1+ dependency chain from 0 to i − 1.
There exists at least one message mk−1 that occupies a virtual channel cx,2+ and
requests the same virtual channel on the wraparound link (k-1,0). The message
mk must occupy the cx,2 virtual channel on the wraparound link and request the
virtual channel cx,1 of the wraparound link (k−1, 0) in order to establish a cyclic
channel dependency. The potential cyclic channel dependency has been broken
at the link (i−1, i) because the message mi−1 requests the virtual channel cx,1+
in any case. ��
Lemma 3. Cyclic channel dependencies cannot be formed by the directed cycles
as shown in Fig. 8, which contain two wraparound links.

Proof: Let us consider the directed cycle as shown in Fig. 8(a), where the label
at a channel shows the direction of that physical channel. Let us consider the
corners c and d in Fig. 8(a), where a turn is allowed at an odd column and a turn
is allowed at the corner d at an odd column m1. Therefore, no cyclic channel
dependency can be established.

As for a counter clockwise cycle as shown in Fig. 8(b), the proposed odd-even
turn model allows a turn from a y+ channel to an x− in an odd row, and a
turn from an x− channe to a y− channel in an even row. Therefore, potential
cyclic channel dependencies as presented in Fig. 8(b) cannot be established.
Potential cyclic channel dependencies with two wraparound links also cannot be
established similarly. ��
Theorem 1. The proposed virtual channel assignment scheme and adaptive
routing algorithm route() in 2D tori can avoid all potential cyclic channel de-
pendencies.

Proof: As presented in Lemmas 1-3, any potential cyclic channel dependencies
as shown in Figs. 2, the potential cyclic channel dependencies as shown in Fig. 3,

Deadlock-Free Adaptive Routing in 2D Tori with a New Turn Model 67

the potential cyclic channel dependencies established inside rings along the same
dimension as presented in Fig. 7, and any potential cyclic channel dependencies
with two wraparound links as shown in Fig. 6 can be removed completely. There-
fore, no cyclic channel dependencies cannot be established. ��

6 Simulation Results

We have implemented the new deadlock-free adaptive routing algorithm in 2D
tori. We have also extended the original west-first and negative-first deadlock-
free routing algorithm for meshes [5] of the turn model [5] to 2D tori, where two
virtual channels are used. The idea of the extended west-first, the negative-first,
and the dimension-order [11] routing algorithms for any hop along a dimension
in 2D tori is that the first virtual channel is used when no wraparound link is
necessary to traverse along the dimension. The second virtual channel is used
when a wraparound link along the dimension must be traversed to reach the
destination.

The message length is set to 32 flits in all cases. All simulation results are
presented for the 32×32 torus. The buffer size for each node is set to 24 flits in all
cases for all methods. We present performance comparison with the dimension-
order routing and the partially adaptive routing algorithms.

Fig. 9 presents performance comparison of the four methods based on the uni-
form communication pattern. The proposed new deadlock-free adaptive routing
algorithm needs less latency to deliver a message in all cases. Latency to deliver
a message for the proposed algorithm is much less than that of the dimension-
order routing algorithm, the west-first algorithm and the negative-first algorithm
after the normalized applied load is greater than 0.5. As for the normalized ac-
cepted traffic, the proposed algorithm does not show apparent advantage before
the normalized applied load is greater than 0.8.

Fig. 10 presents performance comparison among four different methods for
the transpose communication pattern, where a message at the source (i, j) must
be sent to the destination (31 − j, 31 − i). The source is selected randomly in
all cases. The proposed method needs the least latency to deliver a message ind
obtains much better normalized accepted traffic in all cases.

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

av
er

ag
e

la
te

nc
y(

m
s)

normalized applied load

Odd−Even
Dimension Order

Negative−First
West−First

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

no
rm

al
iz

ed
 a

cc
ep

te
d

tr
af

fi
c

normalized applied load

Odd−Even
Dimension Order

Negative−First
West−First

32x32 torus buffer:24 fault:0 32x32 torus buffer:24 fault:0

Fig. 9. Performance comparison with the partially adaptive routing and the determin-
istic routing scheme under the uniform communication pattern

68 D. Xiang, Q. Wang, and Y. Pan

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

av
er

ag
e

la
te

nc
y(

m
s)

normalized applied load

Odd−Even
Dimension Order

Negative−First
West−First

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

no
rm

al
iz

ed
 a

cc
ep

te
d

tr
af

fi
c

normalized applied load

Odd−Even
Dimension Order

Negative−First
West−First

32x32 torus buffer:24 fault:0 32x32 torus buffer:24 fault:0

Fig. 10. Performance comparison with the partially adaptive or deterministic routing
schemes under the transpose communication pattern

 0

 25

 50

 75

 100

 125

 150

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

av
er

ag
e

la
te

nc
y(

m
s)

normalized applied load

Odd−Even
Dimension Order

Negative−First
West−First

32x32 torus buffer:24 fault:0

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

no
rm

al
iz

ed
 a

cc
ep

te
d

tr
af

fi
c

normalized applied load

Odd−Even
Dimension Order

Negative−First
West−First

32x32 torus buffer:24 fault:0

Fig. 11. Performance evaluation for the hotspot communication pattern with previous
methods

Fig. 11 presents performance comparison of the four algorithms based on the
hotspot communication pattern with two hotspot nodes. Fig. 11 shows perfor-
mance of the four algorithms with 10% hotspot messages. The remaining 90%
are injected under the uniform communication pattern. The proposed routing
algorithm works the best in all cases, where the advantage of the proposed
algorithm on both parameters over the previous methods is quite apparent.

7 Conclusions

A new adaptive deadlock-free routing algorithm for 2D tori is proposed based
on a new turn model and virtual channel assignment scheme. The new virtual
channel assignment scheme can successfully remove potential cyclic channel de-
pendencies in rings along the same dimensions. The new odd-even turn model
completely removes potential cyclic channel dependencies related to the mesh
sub-network, where some techniques are introduced to avoid load-unbalancing.
Extensive simulation results are presented by comparison with the dimension-
order routing algorithm [11], and two partially adaptive routing algorithms, such
as the west-first routing [5], and the negative-first routing [5] algorithms for 2D
tori. The results indicate that our proposed method outperforms other related
routing algorithms on 2D torus in all cases.

Deadlock-Free Adaptive Routing in 2D Tori with a New Turn Model 69

References

1. Allen, F., et al.: Blue gene: A vision for protein science using a petaflop supercom-
puter. IBM Systems Journal 40, 310–327 (2001)

2. Chiu, G.M.: The odd-even turn model for adaptive routing. IEEE Trans. on Parallel
and Distributed Systems 11(7), 729–738 (2000)

3. Dally, W.J., Seitz, G.L.: Deadlock-free message routing in multiprocessor intercon-
nection networks. IEEE Trans. on Computers 36(5), 547–553 (1987)

4. Duato, J.: A new theory of deadlock-free adaptive routing in wormhole networks.
IEEE Trans. Parallel and Distributed Systems 4(12), 1320–1331 (1993)

5. Glass, C.J., Ni, L.: The turn model for adaptive routing. Journal of ACM 41(5),
874–902 (1994)

6. Linder, D., Harden, J.: An adaptive and fault-tolerant wormhole routing strategy
for k−ary n−cube. IEEE Trans. Computers 40(1), 2–12 (1991)

7. Mukerhjee, S., Bannon, R., Lang, S., Spink, A.: The Alpha 21364 network archi-
tecture. IEEE Micro 22, 26–35 (2002)

8. Puente, V., Izu, C., Beivide, R., Gregorio, J., Vallejo, F., Prellezo, J.: The adaptive
bubble router. Journal of Parallel and Distributed Computing 61, 1180–1208 (2001)

9. Scott, S., Thorson, G.: The Cray T3E network: Adaptive routing in high perfor-
mance 3D torus. In: Proc. of Int. Symp. on Hot Interconnects, pp. 147–156 (1996)

10. Singh, A., Dally, W.J., Gupta, A., Towles, B.: GOAL: A load-balanced adaptive
routing algorithm for torus networks. In: ACM/IEEE Int. Symp. on Computer
Architecture, pp. 194–205 (2003)

11. Sullivan, H., Bashkow, T., Klappholz, D.: A large scale, homegeneous, fully dis-
tributed parallel machine. In: Proc. of ACM/IEEE Int. symp. on Computer Archi-
tecture, pp. 118–124 (1977)

12. Xiang, D., Zhang, Y., Pan, Y., Wu, J.: Deadlock-free adaptive routing in meshes
based on cost-effective deadlock avoidance schemes. In: 36th Int. Conference on
Parallel Processing (2007)

Neighbourhood Broadcasting and Broadcasting

on the (n, k)-Star Graph

L. He1, K. Qiu1, and Z.Z. Shen2

1 Department of Computer Science
Brock University

St. Catharines, Ontario, L2S 3A1 Canada
2 Dept. of Computer Science and Technology

Plymouth State University
Plymouth, NH 03264

U.S.A.

Abstract. The (n, k)-star graph is a generalization of the star graph.
We first present an optimal neighbourhood broadcasting algorithm for
the (n, k)-star, which is then used to develop an optimal broadcasting
algorithm for it. Both algorithms are for the single-port model of the
network. While our neighbourhood broadcasting is the first such algo-
rithm designed for the network, our optimal O(log(n!/(n − k)!))-time
(=O(k log n)) broadcasting algorithm improves previous algorithms with
O(kn) running time. For the all-port model, we first identify a minimum
dominating set for the (n, k)-star. We then use it to find an optimal
broadcasting algorithm on the all-port model of the (n, k)-star. The run-
ning time of this algorithm matches those of previous ones but the algo-
rithm is simpler by using a dominating set instead of spanning trees. In
addition, the algorithm has no redundancy in that no node receives the
same message more than once.

Keywords: broadcasting, neighbourhood broadcasting, star, (n, k)-star,
disjoint cycle, dominating set.

1 Introduction

The star graph was proposed to be an attractive alternative to the hypercube
topology for interconnecting processors in a parallel computer (interconnection
network), and compares favourably with it in several aspects [1]. A star graph
of dimension n is a regular graph with degree n − 1. It has n! nodes, but both
its degree and diameter are O(n), i.e., sub-logarithmic in the number of vertices,
while a hypercube with O(n!) vertices has a degree and diameter of O(log(n!)) =
O(n log n), i.e., logarithmic in the number of vertices. Other attractive proper-
ties include their symmetry properties, as well as many desirable fault tolerance
characteristics [1]. However, a major limitation to its feasibility as a topology
in which processors are connected in an interconnection network is the require-
ment that the number of nodes in an n-star be n!, resulting in a huge gap

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 70–78, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Neighbourhood Broadcasting and Broadcasting 71

between the n-star and the (n + 1)-star. For the very popular hypercube, a sim-
ilar problem exists since an n-cube contains 2n nodes while the next one has
2n+1 nodes. It is for this reason that incomplete hypercube was proposed [9]. To
achieve scalability, incomplete stars have also been proposed [15,10]. Similarly,
(n, k)-star graph was proposed to overcome the drawback of the star [4]. The
(n, k)-star graph is a generalization of the star graph without the restriction that
the total number of nodes be n! while preserving many properties of the star
graph [4,5].

For any interconnection network, we can classify it as either a weak model or
a strong model, depending on how a node communicates with its neighbours. In
a weak model (single-port model), in one time unit, a node can send (receive)
at most one datum of fixed length to (from) one and only one of the nodes to
which it is directly connected. On the other hand, in a strong model (all-port
model) in one time unit, a node can send (receive) one datum of fixed length to
(from) any number of nodes to which it is directly connected.

One of important operations on a parallel computer is broadcasting where
one node (source) sends a message to all nodes. A similar problem that has been
studied is the problem of neighbourhood broadcasting which is defined as sending
a fixed sized message from the source node to all its neighbours where in one time
unit, a node can send to or receive from exactly one of its neighbours a datum of
constant size [6]. In other words, it is to simulate a single step of the strong model
on a weak model. This problem has been considered for several interconnection
networks [2,6,7,8,13,14]. Clearly, for any interconnection network with N nodes,
on a single-port model, the problem of broadcasting has a trivial lower bound of
Ω(log N) since the number of nodes receiving the message can at most double
after each step. Similarly, the problem of neighbourhood broadcasting has a
trivial lower bound of Ω(log n) where n is the degree of the source node. On an
all-port model, clearly, a trivial lower bound for the problem of broadcasting is
the diameter of the network and the neighbourhood broadcasting can be done
in constant time.

For the single-port model, we first present an optimal neighbourhood broad-
casting algorithm for the (n, k)-star, which is then used to develop an opti-
mal broadcasting algorithm for the interconnection network. Our neighbourhood
broadcasting is the first such algorithm to the best of our knowledge while our
broadcasting algorithm achieves the optimality, improving the previous results
which are not optimal. For the all-port model, we first identify a minimum dom-
inating set for the (n, k)-star. We then use it to find an optimal broadcasting
algorithm. This time complexity matches the results of previous work but our
algorithm is much simpler. We organize the paper as follows. Section 2 defines
the (n, k)-star graph and presents its relevant properties. We then develop the
optimal neighbourhood broadcasting and broadcasting algorithms on the net-
work for the two models in Section 3. Note that throughout this paper, we use
nodes and vertices interchangeably to refer to processors in an interconnection
network (graph).

72 L. He, K. Qiu, and Z.Z. Shen

2 Properties of the (n, k)-Star Interconnection Network

For 1 ≤ k ≤ n − 1, an (n, k)-star graph is defined as follows. The vertex set is
{p1p2 · · · pk|1 ≤ pi ≤ n, and for i �= j, pi �= pj} such that each node p1p2 · · · pk

is adjacent to k − 1 nodes pip2 · · · pi−1p1pi+1 · · · pk, 2 ≤ i ≤ k (these edges are
called i-edges and we call these connections dimensions) and to n − k nodes
pp2p3 · · · pk for p ∈ {1, 2, · · · , n} − {p1, p2, · · · , pk} (1-edges). An (n, k)-star is
also denoted as Sn,k. Fig. 1 shows a (4, 2)-star.

14

24 34

42 12

32

41

21 31

43 13

23

Fig. 1. A (4, 2)-star S4,2

The (n, k)-star graph is an (n − 1)-regular graph with n!/(n − k)! number
of nodes. In addition, it is vertex symmetric, and Sn,n−1 is isomorphic to the
n-star Sn [4]. The vertex symmetry of the graph implies that routing between
two arbitrary nodes reduces to routing from an arbitrary node to the identity
node e = 123 · · ·k. We use the notation i∗ to represent a node whose first symbol
is i. Similarly, ∗i represents a node whose last symbol is i. The diameter of Sn,k

is O(k) [4].
Let Sn−1,k−1(i) be a subgraph where all the nodes are of the form ∗i, 1 ≤ i ≤ n,

then Sn−1,k−1(i) is isomorphic to an (n− 1, k− 1)-star. This gives us one way to
decompose an (n, k)-star into n (n−1, k−1)-stars Sn−1,k−1(i), for 1 ≤ i ≤ n [4].

3 Broadcasting and Neighbourhood Broadcasting on the
(n, k)-Star

3.1 Broadcasting on the Single-Port Model

Neighbourhood Broadcasting on Sn,k. Because the (n, k)-star is vertex-
symmetric, without loss of generality, we assume that the source node is 12 · · ·k.
For this node, its i-edge neighbours are

21345 · · ·k
32145 · · ·k
42315 · · ·k

Neighbourhood Broadcasting and Broadcasting 73

· · ·
k2345 · · ·1

and its 1-edge neighbours are

(k + 1)234 · · ·k
(k + 2)234 · · ·k

· · ·
n234 · · ·k

Our algorithms are based on the following observations on structural properties
of the (n, k)-star:

Observation 1. For any m �= 1, Sm,1 is a clique Km(a complete graph of
size m).

Observation 2. In Sn,k, for any node u, u and all its 1-edge neighbours form
a clique Kn−k+1.

Observation 3. For any two i-edge neighbours i∗k = i23 · · · (i−1)1(i+1) · · ·k
and j ∗ k = j23 · · · (j− 1)1(j +1) · · ·k of the node 12 · · ·k (we assume that i < j
without loss of generality), they are on the same cycle of length 6 as follows,

123 · · · i · · · j · · · k ↔
i23 · · ·1 · · · j · · · k ↔
j23 · · · 1 · · · i · · ·k ↔
123 · · · j · · · i · · ·k ↔
i23 · · · j · · · 1 · · ·k ↔
j23 · · · i · · · 1 · · ·k ↔

where ↔ represents a bi-directional link (edge) between two nodes. This cycle
involves only i-edges.

In fact, the above observation also holds true when k + 1 ≤ j ≤ n:

Observation 4. For any i-edge neighbour i∗k = i23 · · · (i−1)1(i+1) · · ·k and
1-edge neighbour j ∗ k = j23 · · ·k of of the node 12 · · ·k, where k + 1 ≤ j ≤ n,
they are on the same cycle of length 6 as follows,

123 · · · (i− 1)i(i + 1) · · · k↔
i23 · · · (i− 1)1(i + 1) · · · k↔
j23 · · · (i− 1)1(i + 1) · · · k↔
123 · · · (i− 1)j(i + 1) · · · k↔
i23 · · · (i− 1)j(i + 1) · · · k↔
j23 · · · (i− 1)i(i + 1) · · · k↔

74 L. He, K. Qiu, and Z.Z. Shen

This cycle involves both i-edges and 1-edges.

Observation 5. Any two 6-cycles formed as in Observations 3 and 4 with dis-
tinct 2 ≤ i1, j1, i2, j2 ≤ n are disjoint except that they share the source node
123 · · ·k.

The proofs for these observations are fairly straightforward and thus omitted.
Note that Observations 3, 4, and 5 allow us to view the source node together

with its n− 1 neighbours as a de facto complete graph in the sense that any two
nodes are connected by a path of constant length.

Based on the above observations and the technique of recursive doubling where
at each step, we double the number of neighbours with the message by using a set
of disjoint cycles of constant size in Sn,k, a simple neighbourhood broadcasting
algorithm (given below) for Sn,k can be designed.

Initially, the source node is the only one with the message. In one step, it sends
the message through the direct link to one of its neighbours. Now two nodes have
the message and they in turn send the message to two other neighbours of the
source node in such a way that the source sends its message to a neighbour in one
step and the neighbour who just received the message in previous step sends the
message to another neighbour of the source node via a length-4 path that is part
of a 6-cycle. The number of nodes with the message is now 4 (the source node and
three of its neighbours) and these four nodes send the message to another four
neighbours of the source node in the same fashion. That is, three neighbours of
the source node with the message send the message to another three neighbours
of the source node by disjoint paths of length four that are parts of three disjoint
6-cycles and the source node sends its message to a neighbour directly. The algo-
rithm continues until all neighbours of the source node receive the message.

One possible implementation is given as follows (assuming that the neighbours
of node 12 · · ·k are ordered such that 213 · · ·k is the first, 321 · · ·k is the second,
etc.):

Broadcast (n)
N = 1 /* the number of nodes currently with the message */
for i = 0 to �log n

2 � do
if 1 ≤ n−N ≤ 3

source node 12 · · ·n sends the message to the remaining nodes
(neighbours) that have not received the message yet by direct
links /* nodes 2i + j, 1 ≤ j ≤ n−N */ stop

else in parallel
each node u that has the message sends its message to node
u + 2i, if node u + 2i exists (source node does this through
the direct link while others through paths of the form
u∗ → (u + 2i)∗ → 1∗ → u∗ → (u + 2i)∗
(a neighbour of the source) of length 4 on disjoint cycles)
N ← 2×N

end Broadcast (n)

Neighbourhood Broadcasting and Broadcasting 75

Another possible implementation is to first do a (neighbourhood) broadcasting
in the (n−k)-clique formed by all the 1-edge neighbours of the source node, then
start the recursive doubling. Many other implementations are also possible since
the source and its neighbours form a de facto complete graph from a practical
point of view.

This algorithm works correctly because the 6-cycles used in the routing are all
disjoint (except at the source node). As for the running time, we first consider
the case where n mod 2�log n� > 3. In this case, �log n� steps are needed where
each step requires routing of length 4 except the very first step where the source
sends its message directly to node 2. Thus,

t(n) = 4�log n� − 3
= 4�log n� − 4 log 2 + 1
= 4�log(n/2)�+ 1.

The analysis for the other case is similar. Therefore, the running time for the
algorithm is

t(n) =
{

4�log(n/2)�+ 1 + x if 1 ≤ x = n mod 2�log n� ≤ 3
4�log(n/2)�+ 1 otherwise

which is O(log n).
Note that when n is relatively small, it is better for the source node to simply

send its message to each of its n − 1 neighbours one at a time, requiring n − 1
steps.

To the best of our knowledge, this neighbourhood broadcasting is the first
such algorithm for the (n, k)-star graph.

Broadcasting on Sn,k. The problem of broadcasting has been studied for the
(n, k)-star previously [3,11] where O(nk) time algorithms are obtained.

With our algorithm for neighbourhood broadcasting just developed, broad-
casting on an (n, k)-star can now be done easily. Once again, without loss of
generality, assume that node 123 · · ·k wants to broadcast a piece of message.
The algorithm proceeds as follows:

Broadcast(Sn,k)
if k = 1 (the network has become a clique), simply perform a standard

broadcasting algorithm
else the source node 12 · · ·k performs a neighbourhood broadcasting so that

nodes 2∗k, 3∗k, ..., (k−1)∗k, and k∗1 (all i-edge neighbours, 2 ≤ i ≤ k),
and (k +1) ∗ k, (k +2) ∗ k, ..., and n ∗ k (all 1-edge neighbours) all have
the message. Now, all (except node k ∗ 1) send their message to their
k-dimension neighbours ∗2, ∗3, ..., ∗n so that every Sn−1,k−1(i) has
a node with the message
In parallel, for all 1 ≤ i ≤ n, do Broadcast(Sn−1,k−1(i)).

76 L. He, K. Qiu, and Z.Z. Shen

Let t(n, k) be the running time for broadcasting on (n, k)-star, then t(n) is
easily seen to be

t(n, k) = C log n + t(n− 1, k − 1)
= C log n + C log(n− 1) + t(n− 2, k − 2)
...
= C log n + C log(n− 1) + · · ·+ C log(n− k + 2) + t(n− k + 1, 1)
= C log n + C log(n− 1) + · · ·+ C log(n− k + 2) + C1 log(n− k + 1)
= O(log(n!/(n− k)!))
= O(k log n),

which is optimal in view of the Ω(log(n!/(n− k)!)) lower bound.
The key to the broadcasting algorithm is the neighbourhood broadcasting

algorithm that first sends the message to n − 1 neighbours of the source node
that are of the forms 2 ∗ k, 3 ∗ k, ..., (k − 1) ∗ k, k ∗ 1, (k + 1) ∗ k, (k + 2) ∗ k, ...,
and n∗k. Similar idea has been used before in deriving a broadcasting algorithm
for the star, for example, in [12]. The main difference is that instead of being
neighbours of the source node, these n− 1 nodes are in a binary tree rooted at
the source node. It is also worth pointing out that there is a binomial tree rooted
at the source node (thus any node due to the vertex symmetry of the star graph)
containing nodes of these forms.

3.2 Broadcasting on the All-Port Model

In addition to the time (the number of communication steps) required, one of
the considerations in developing a broadcasting algorithm in a parallel computer
is the traffic, i.e., the total number of messages exchanged [16]. This means that
it is desirable to minimize both the time and traffic [16]. To minimize the traffic
is equivalent to minimizing the redundancy, i.e., the number of times a node
receives the same message.

Broadcasting on the all-port (n, k)-star has been considered before and op-
timal algorithms whose running times are proportional to the diameter of the
network have been obtained using spanning trees [11] . Here, we present another
approach to the problem using a minimum dominating set to relay the message
such that no node receives the same message more than once. Its running time
is O(k), thus optimal, and is arguably simpler.

A dominating set of vertices in a graph G = (V, E) is a set V ′ ⊆ V such that
every vertex of G belongs to V ′ or has a neighbour in V ′.

Let Dn,k be a minimum dominating set of Sn,k. Since the graph is a regular
graph of degree n− 1, and each vertex in a minimum dominating set dominates
itself and up to n − 1 of its neighbours, we have |Dn,k| ≥ (n!/(n − k)!)/n, i.e.,
Dn,k contains at least (n− 1)!/(n− k)! vertices.

Let D be the set of all the nodes of the form i∗. Clearly, any node in the
graph is adjacent to one node of this form. In addition, the number of nodes of

Neighbourhood Broadcasting and Broadcasting 77

this form is (n− 1)!/((n− 1)− (k − 1))! = (n− 1)!/(n− k)!. Therefore, D is a
minimum dominating set of Sn,k.

A simple broadcasting algorithm on all-port Sn,k can now be found based on
the minimum dominating set as follows:

Algorithm Broadcast (Sn,k)
if n = 2 then

Source sends the message along dimension 2
else if k = 1 then

Source sends the message to all its neighbours (all 1-edge neighbours)
else

Broadcast(Sn−1,k−1(k))
Each node ∗k (in Sn−1,k−1(k)) sends its message to neighbour k∗
along dimension k (the set of the nodes of the form k∗ is a
minimum dominating set)
Each node in the dominating set sends its message along
all dimensions except k

End Algorithm

It is easy to see from the algorithm that each node receives the message exactly
once, thus there is no message redundancy. As to the analysis, let t(n, k) be the
time required to broadcast in Sn,k, then we have

t(n, k) =
{

1 n = 2 or k = 1
t(n− 1, k − 1) + 2 else

Solving it gives us that t(n, k) = 2k = O(k).

4 Conclusion

We presented an optimal neighbourhoodbroadcasting algorithm for the (n, k)-star
under the single-portmodel, a generalization of the star graph. This algorithm was
then used to develop an optimal broadcasting algorithm for the interconnection
network. Both algorithms are the first optimal algorithms for the (n, k)-star. For
the all-port model, we developed an optimal algorithm using the minimum domi-
nating set whose performance matches those obtained earlier. In developing these
algorithms, some interesting properties of the (n, k)-star are also found. We hope
to find more algorithms that can run on this interconnection network in the future.

References

1. Akers, S.B., Krishnamurthy, B.: A Group Theoretic Model for Symmetric Inter-
connection Networks. IEEE Transactions on Computers c-38(4), 555–566 (1989)

2. Bermond, J.C., Ferreira, A., Pérennes, S., Peters, J.G.: Neighbourhood broadcast-
ing in hypercubes, Technical Report, SFU-CMPT-TR 2004-12, School of Comput-
ing Science, Simon Fraser University, Canada

78 L. He, K. Qiu, and Z.Z. Shen

3. Chen, Y.S., Tai, K.S.: A Near-Optimal Broadcasting in (n, k)-Star Graphs. In:
ACIS International Conference on Software Engineering Applied to Networking
and Parallel/Distributed Computing (SNPD 2000), pp. 217–224 (2000)

4. Chiang, W.K., Chen, R.J.: The (n, k)-Star Graph: A Generalized Star Graph.
Information Processing Letters 56, 259–264 (1995)

5. Chiang, W.K., Chen, R.J.: Topological Properties of (n, k)-Star Graph. Interna-
tional Journal of Foundations of Computer Science 9(2), 235–248 (1997)

6. Cosnard, M., Ferreira, A.: On the real power of loosely coupled parallel architec-
tures. Parallel Processing Letters 1, 103–111 (1991)

7. Fujita, S.: Neighbourhood Information Dissemination in the Star Graph. IEEE
Transaction on Computers 49(12), 1366–1370 (2000)

8. Fujita, S.: Optimal Neighborhood Broadcast in Star Graphs. Journal of Intercon-
nection Networks 4(4), 419–428 (2003)

9. Katseff, H.P.: Incomplete Hypercubes. IEEE Trans. Compu. C-37(5), 604–608
(1988)

10. Latifi, S., Bagherzadeh, N.: Incomplete Star: An Incrementally Scalable Network
Based on the Star Graph. IEEE Trans. on Parallel and Distributed System 5(1),
97–102 (1994)

11. Li, J.L., Chen, M.L., Xiang, Y.H., Yao, S.W.: Optimum Broadcasting Algorithms in
(n, k)-Star Graphs Using Spanning Trees. In: Li, K., Jesshope, C., Jin, H., Gaudiot,
J.-L. (eds.) NPC 2007. LNCS, vol. 4672, pp. 220–230. Springer, Heidelberg (2007)

12. Mendia, V.E., Sarkar, D.: Optimal Broadcasting on the Star Graph. IEEE Trans.
on Parallel and Distributed System 3(4), 389–396 (1992)

13. Qiu, K., Das, S.K.: A Novel Neighbourhood Broadcasting Algorithm on Star
Graphs. In: IEEE 9th International Conference on Parallel and Distributed Sys-
tems (ICPADS 2002), Taiwan, December 2002, pp. 37–41 (2002)

14. Qiu, K.: On a Unified Neighbourhood Broadcasting Scheme for Interconnection
Networks. Parallel Processing Letters 17(4), 425–437 (2007)

15. Ravikumar, C.P., Kuchlous, A., Manimaran, G.: Incomplete Star Graph: An Eco-
nomical Fault-Tolerant Interconnection Network. In: Proc. International Confer-
ence on Parallel Processing, vol. 1, pp. 83–90 (1993)

16. Sheu, J.P., Wu, C.T., Chen, T.S.: An Optimal Broadcasting Algorithm without
Message Redundancy in Star Graphs. IEEE Transactions on Parallel and Dis-
tributed Systems 6(6), 653–658 (1995)

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 79–82, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Fault Tolerance in the Biswapped Network

Wenhong Wei and Wenjun Xiao

Department of Computer Science, South China University of Technology,
510641 Guangzhou, China

hquwwh@tom.com, wjxiao@scut.edu.cn

Abstract. Biswapped network (BSN) is a new topology for interconnection
networks in multiprocessor systems. BSN is built of 2n copies of an n-node ba-
sic network and total nodes are 2n2, and its basic network may be hypercube,
mesh and other networks, hence we can construct BSN-Hypercube and BSN-
Mesh by using hypercube and mesh as basic network. Some topological proper-
ties of BSN have been investigated, and some algorithms have been developed
on the BSN such as sorting and matrix multiplication etc. In this paper, we dis-
cuss the fault tolerant issue of the BSN including network connectivity and fault
diameter.

Keywords: Biswapped network (BSN), Cayley graphs, Network connectivity,
Fault diameter.

1 Introduction

The swapped network is also called as the OTIS-network and has important applica-
tions in parallel processing [1,2]. In this network architecture, n2 processors are di-
vided n groups where there are n processors, and processors in the same group are
connected by intra-group link, simultaneously, these groups are connected by inter-
group link. But swapped network is not a Cayley graph, and then it is not a symmetri-
cal network architecture, so some algorithms on it are not always convenient. For
remedying this limitation about swapped network, [3] proposed Biswapped network
(BSN), the new network is a class of Cayley graph if the basic network is a Cayley
graph and is tight related to the swapped network. BSN is of more regularity than the
swapped network. BSN is built of 2n copies of an n-node basic network using a sim-
ple rule for connectivity that ensures its regularity, modularity, fault tolerance, and
algorithmic efficiency. Some topological properties of BSN have been investigated
[3], and some algorithms have been developed on the BSN such as sorting and matrix
multiplication etc [4].

A central issue in the design of interconnection networks is fault tolerance as it is
essential for a large parallel system to work properly even when some processors fail,
and fault tolerance is one of the central issues in today’s interconnection networks,
which has been discussed extensively [5-6]. In this paper, we analyze the fault toler-
ance aspects of BSN, including network connectivity and fault diameter of BSN. The
remainder of this paper is organized as follows. Section 2 describes BSN and related

80 W. Wei and W. Xiao

terms used in its definition. Section 3 discusses the network connectivity of the BSN;
link and node connectivity are covered, and proves that BSN is maximally fault toler-
ant when its basic network is maximally fault tolerant. Section 4 describes fault-
diameter of the BSN. The conclusion is made in Section 5.

2 Biswapped Network

Definition 1. Let Ω be a graph with the vertex set },...,,{)(21 nhhhV =Ω and the arc

set)(ΩE . Our biswapped network))(),(()(ΣΣ=Σ=ΩΣ EV is a graph defined as

follows [3]:

V(Σ) = {〈 g, p, 0〉 , 〈 g, p,1〉 | g, p ∈ V(Ω)}

and

E(Σ) = {(〈g, p1, 0〉 , 〈g, p2, 0〉), (〈g, p1, 1〉 , 〈g, p2, 1〉) | (p1, p2)∈E(Ω), g∈V(Ω)}
∪ {(〈g, p, 0〉 , 〈p, g, 1〉), (〈g, p, 1〉 , 〈p, g, 0〉) | g, p ∈V(Ω)}

Intuitively, if we regard the basis network as group, the definition postulates 2n
groups, each group being an Ω digraph: n groups, with nodes numbered 〈group#,
processor#, 0〉, form part 0 of the bipartite graph, and n groups constitute part 1, with
associated node numbers 〈group#, processor#, 1〉. Each group p in either part of Σ has
the same internal connectivity as Ω (intra-group edges, forming the first set in the
definition of E(Σ)). In addition, node g of group p in part 0/1 is connected to node p in
group g of part 1/0 (inter-group or swap edges in the second set in the definition for
E(Σ)). The name “biswapped network” (BSN) arises from two defining properties of
the network just introduced: when group are viewed as super-nodes, the resulting
graph of super-nodes is a complete 2n-node bipartite graph, and the inter-group links
connect nodes in which the group number and the node number within group are
interchanged or swapped.

When 4C=Ω is a circle of order 4, an example of the network)(4CΣ is denoted in

Fig. 1.

 0,0,0

0,2,10,3,1

0,0,1

1,0,0

1,2,1

1,2,01,3,0

1,0,1

2,0,0

2,2,0

1,3,1

2,3,0

2,0,1

2,2,12,3,1

0,2,00,3,0

part 0

part 1

0,1,0 1,1,0 2,1,0

0,1,1 1,1,1 2,1,1

3,0,0

3,2,03,3,0

3,0,1

3,2,13,3,1

3,1,0

3,1,1

Fig. 1. An example of BSN whose basic network is C4

Similar to swapped network (or OTIS), links between vertices of the same group
are regarded as intra-group links, and links between vertices of between two groups
follow the swapping strategy, which are regarded as inter-group links.

 Fault Tolerance in the Biswapped Network 81

3 Network Connectivity

Connectivity is the minimum number of nodes or links that must fail for the network
to be partitioned into 2 or more disjoint sub-networks. In one network, if any less than
k-1 nodes are removed but the network isn’t disconnected, and when this network is
separated by removing k nodes, this network becomes disconnected, the connectivity
of this network is k. Node (link) connectivity is the minimum number of nodes (links)
which should be removed for a network of being divided into at least two sub-
networks. A network that has the same node-connectivity, link-connectivity and
degree can be said that it is maximally fault tolerant.

Consider the BSN as a 2-level structure, and hence the connectivity of BSN is cor-
responding to the basic network. For example, if basic network is hypercube, the
connectivity of BSN-Hypercube is derived from hypercube.

Theorem 1. The node-connectivity of BSN-Ω is n+1 if node-connectivity of Ω is n.

Proof: Omitted.

In any network, the node-connectivity is smaller than or equal to the minimum degree
since removal of a node whose degree equal to the minimum degree results in a dis-
connected network. Also, the node-connectivity must always be smaller than or equal
to the link-connectivity [8], because removing a node effectively removes all links
connected to that node. Thus, a node failure is more damaging to network-
connectivity than a link failure, and fewer node failures could be necessary to discon-
nect the network.

Corollary 1. The link-connectivity of BSN-Ω is n+1 if link-connectivity of Ω is n.

Theorem 2. BSN-Ω is maximally faulty tolerant if Ω is maximally faulty tolerant.

Proof: Let the degree of Ω be n, because Ω is maximally faulty tolerant, the node-
connectivity and link-connectivity of Ω is n, hence the node-connectivity and link-
connectivity of BSN-Ω is n+1. As we know, the degree of BSN-Ω is n+1, so BSN-Ω
is maximum faulty tolerant.

When the node-connectlivity of one network is n, the network provides n disjoint
paths between every pair of nodes in the network and can tolerate n-1 faulty nodes.
Hence, higher node-connectivity or link-connectivity increases the resiliency of the
network to failure. New routing paths can be established based on the proofs of theo-
rem 1. Of course, longer paths have to be used to avoid faulty nodes and links. In
addition to being a measure of network reliability, connectivity is also a measure of
performance. So designing a network with higher connectivity is especially important.

4 Fault Diameter

A fault diameter of a network G is defined as the diameter of a new network G’ gen-
erated after the faulty nodes and links are removed from network G [5]. An f-fault
diameter of a network is defined to be the maximum of distances over all possible
networks that can occur with at most faults. In a regular network of degree d, d-faulty
diameter is equal to ∞ since if all neighbors of any node fail, the network becomes

82 W. Wei and W. Xiao

disconnected. Hence, particular interest is (d-1)-fault diameter, and we consider (d-1)-
fault diameter as fault diameter in a general way. When the fault diameter of network
G is the diameter+constant value, we can say G to be strongly resilient [7]. Now,
calculate the fault diameter for BSN.

Theorem 3. The n-fault diameter of BSN-Ω is 2D(Ω)+2+ε if the fault diameter of Ω
is D(Ω)+ε (ε≥0).

Proof: Omitted.

Corollary 2. BSN-Ω is strongly resilient if Ω is strongly resilient.

Proof: According to theorem 3 and [7], corollary 2 is proved easily.

5 Conclusion

BSN is a two-stage network, the fault tolerant of BSN is decided by its basic network.
In this paper, we analyzed the fault tolerance of BSN with knowing the fault tolerance
of its basic network. We proved that node-connectivity and link-connectivity of BSN
was n+1 when of its basic network was n, and BSN was maximally fault tolerant
when its basic network was maximally fault tolerant. We also derived the fault diame-
ter of BSN and proved BSN was strongly resilient. Because of our conclusion, we
know that BSN is a good fault tolerant network, and what we will do is develop the
fault tolerant routing algorithm of BSN.

Acknowledgments. This work is supported by the Doctorate Foundation of South
China University of Technology and Open Research Foundation of Guangdong Prov-
ince Key Laboratory of Computer Network.

References

1. Parhami, B.: Swapped Interconnection Networks: Topological, Performance, and Robust-
ness Attributes. Journal of Parallel and Distributed Computing 65, 1443–1452 (2005)

2. Day, K., Al-yyoub, A.: Topological Properties of OTIS-networks. IEEE Transactions on
Parallel and Distributed Systems 13(4), 359–366 (2002)

3. Xiao, W.J., Chen, W.D., He, M.X., Wei, W.H., Parhami, B.: Biswapped Network and Their
Topological Properties. In: Proceedings Eighth ACIS International Conference on Software
Eng., Artific. Intelligence, Networking, and Parallel/Distributed Computing, pp. 193–198
(2007)

4. Wei, W.H., Xiao, W.J.: Matrix Multiplication on the Biswapped-Mesh Network. In: Pro-
ceedings Eighth ACIS International Conference on Software Eng., Artific. Intelligence,
Networking, and Parallel/Distributed Computing, pp. 211–215 (2007)

5. Pan, Y.: Fault Tolerance in the Block-Shift Network. IEEE Transactions on Reliabil-
ity 50(1), 88–91 (2001)

6. Cao, F., Hsu, D.F.: Fault Tolerant Properties of Pyramid Networks. IEEE Transactions on
Computers 48(1), 88–93 (1999)

7. Akers, S.B., Krishnamurthy, B.: On Group Graphs and Their Fault Tolerance. IEEE Trans-
actions on Computer c 36(7), 885–888 (1987)

8. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. North-Holland (1979)

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 83–96, 2008.
© Springer-Verlag Berlin Heidelberg 2008

3D Block-Based Medial Axis Transform and Chessboard
Distance Transform on the CREW PRAM

Shih-Ying Lin2,*, Shi-Jinn Horng1,3,4,7, Tzong-Wann Kao5, Chin-Shyurng Fahn3,
Pingzhi Fan1, Cheng-Ling Lee6, and Anu Bourgeois7

1 Institute of Mobile Communications, Southwest Jiaotong University, 610031, Chengdu
2 Department of Electrical Engineering, National Taiwan University of Science and

Technology, Taipei, Taiwan

3 Department of Computer Science and Information Engineering, National Taiwan
University of Science and Technology, Taipei, Taiwan

4 Department of Electronic Engineering, National United University, Miaoli, Taiwan
5 Department of Electronic Engineering, Technology and Science Institute of Northern

Taiwan, Taipei, Taiwan
6 Department of Electro-Optical Engineering, National United University, Miaoli, Taiwan

7 Department of Computer Science, Georgia State University Atlanta, GA 30302-4110

Abstract. Traditionally, the block-based medial axis transform (BB-MAT) and
the chessboard distance transform (CDT) were usually viewed as two completely
different image computation problems, especially for three dimensional (3D)
space. We achieve the computation of the 3D CDT problem by implementing the
3D BB-MAT algorithm first. For a 3D binary image of size N3, our parallel al-
gorithm can be run in O(logN) time using N3 processors on the concurrent read
exclusive write (CREW) parallel random access machine (PRAM) model to
solve both 3D BB-MAT and 3D CDT problems, respectively. In addition, we
have implemented a message passing interface (MPI) program on an AMD Op-
teron Model 270 cluster system to verify the proposed parallel algorithm, since
the PRAM model is not available in the real world. The experimental results
show that the speedup is saturated when the number of processors used is more
than four, regardless of the problem size.

Keywords: parallel algorithm, image processing, CREW, PRAM model,
block-based medial axis transform, chessboard distance transform, Euclidean
distance transform.

* The revision of this paper was completed by the second author while visiting Georgia State

University. This work was supported in part by the Southwest Jiaotong University Visiting
Professor Fellowship and the University Doctorial Research Foundation under grant
No.20020613020, Ministry of Education. It was also supported in part by National Science
Council under the contract number NSC 95-2221-E-011-020-, NSC 95-2221-E-011-032-MY3
and NSC 96-2918-I-011-002. Currently, S.-Y. Lin is a full instructor at Lan Yang Institute of
Technology, I-Lan, Taiwan. E-mail: max@mail.fit.edu.tw. Corresponding author: Prof.
Shi-Jinn Horng, Email: horngsj@yahoo.com.tw

84 S.-Y. Lin et al.

1 Introduction

Consider a two dimensional (2D) or a three dimensional (3D) binary image consisting
of foreground (black) pixels and background (white) pixels. The extraction of the in-
formation about the shape and the position of the foreground pixels relative to each
other are frequently used in the fields of image processing and computer vision. This
can be done by two common techniques. One is the distance transform (DT) introduced
by Rosenfeld and Pfaltz [1]. The other is the medial axis transform (MAT) originally
explored by Blum [2]. The DT is an operation that converts a binary image to an image,
where each pixel has a value corresponding to the distance to the nearest foreground
pixel. The chessboard distance transform (CDT) and the Euclidean distance transform
(EDT) are both DTs based on the chessboard distance metrics and the Euclidean dis-
tance metrics, respectively. Given an N×N binary image M with m(i, j)∈{0,1}, 0 ≤ i,
j ≤ N-1, where 1 denotes a foreground pixel, 0 denotes a background pixel. Let B1 =
{b1(i, j) | m(i, j) = 1 of M} be the set of all foreground pixels of M, and B0 = { b0(i, j) |
m(i, j) = 0 of M} be the set of all background pixels of M. Then the 2D EDT of an image
M can be computed by

EDT(m(i, j)) = (
1),(

min
Byx ∈

(i – x)2 + (j – y)2)1/2, for 0 ≤ i, j ≤ N-1.

The two dimensional distance function of Lk metric of the plane by dk as defined in
[3] is listed as follows:

dk((i, j), (x, y)) = (|i - x|k + |j - y|k)1/k where 1 ≤ k < ∞ ,

d∞ ((i, j), (x, y)) = max(|i - x|, |j - y|).

d1 is called the “city block distance”, d2 is called the “Euclidean distance” and d∞ is

called the “chessboard distance”. Then the 2D CDT of an image M is to find an array

CDT(m(i, j))=
1),(

min
Byx ∈

{max(|i - x|, |j - y|)}, for 0 ≤ i, j ≤ N-1. (1-1)

1.1 Related Work

The block-based MAT is denoted as BB-MAT [4], which is a recovering of the object
by maximal square (cube) blocks of pixels (voxels) in a 2D (3D) space. A maximal
square (cube) block of pixels (voxels) is a square (cube) block that is not contained in
any other square (cube) block. In this paper, the MAT is defined as the BB-MAT.
Similar to [5, 6], we define the 2D MAT of an image M as follows:

MAT(m(I ,j)) = (1-2)

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∈

∈

B jim if

 ;B j) m(i, if direction, right-lower the in

 squarelargest the of height the

0

1

), (,0

 3D Block-Based Medial Axis Transform and Chessboard Distance Transform 85

Fig. 1. An example for the chessboard distance transform and the medial axis transform of a
binary image M. An empty circle is a pixel whose value is 0.

An example for the chessboard distance transform and the medial axis transform of a
binary image M of size 8×8 is shown in Fig. 1.

There are some practical applications for the MAT developed either in two or three
dimensional space. Ramanathan and Gurumoorthy [7] proposed an algorithm for gen-
erating the MAT of 3D objects with free form boundaries that are obtained by extrusion
along a line or revolution about an axis. This algorithm uses the 2D MAT of the profile
being extruded or revolved to identify the limiting entities (junction points, seams and
points of extremal maximum curvature) of the 3D MAT. Morrison and Zou [8] pro-
posed a non-pixel-based skeletonization technique and showed many advantages over
traditional pixel-based methods such as thinning. These advantages include superior
efficiency and faster processing time. Remy and Thiel [9, 10] proposed an algorithm
that computes the look-up table and the neighborhood to be tested in the case of
chamfer distances.

For the theoretical research domain, very few parallel algorithms have been devel-
oped for the 3D distance-based MAT (DB-MAT) or 3D BB-MAT problem. Wang and
Horng [11, 12] showed that the task of computing the 3D DB-MAT of a binary image
of size N × N× N can be performed in O(1) time using ε3 ++ δN processors on the

CRCW PRAM, and in O(1) time using ε3+N processors on the array with recon-

figurable optical buses (AROB), respectively, where δ =1/(1c2 + -1),ε =1/d, d and c
are constants and positive integers. Recently, Wang [13] proposed the 3D BB-MAT of
a binary image of size N×N×N in O(1) time on an Linear array with a reconfigurable
pipelined bus system (LARPBS) of size max{N3, S3, S3i, S3j, S3k}

 processors, where

0 ≤ S3, S3i, S3j, S3k ≤ δ+4N , 0<δ =1/(
1c2 +

-1) ≤ 1. The worst case would result in using
N5 processors. Lin and Horng et al. [14] developed a parallel algorithm that can solve
the 3D BB-MAT of a binary image of size N×N×N in O(1) time using N4 processors
on the AROB. In this paper, we present a parallel algorithm for solving the three di-
mensional block-based medial axis transform problem on the CREW PRAM model.
Based on the relationships of the 2D CDT and the 2D MAT derived by Lee and Horng
[15], we compute the 3D CDT by use of the 3D BB-MAT algorithm. For a 3D binary
image of size N3, our parallel algorithm can be run in O(logN) time using N3 processors
on the CREW PRAM model to solve both 3D BB-MAT and 3D CDT problems. To the
best of our knowledge, the presented results are the first 3D CDT algorithm known. The

86 S.-Y. Lin et al.

Table 1. Comparison results for parallel 3D BB-MAT algorithms

Algorithm
Time

Complexity
Processor Architecture

Wang [13] O(1)
max{ N3, S3, S3i, S3j, S3k}

 , where 0 ≤ S3,
S3i, S3j, S3k ≤ N4+δ , 0<δ =1/(2c+1-1) ≤ 1.

LARPBS

Lin et al.[14] O(1) N× N× N× N AROB
This paper O(logN) N× N× N CREW

Table 2. Comparison results for parallel 3D CDT algorithms.

Algorithm Time Complexity Processor Architecture
No previously published results

This paper O(logN) N× N× N CREW

comparison results for the 3D BB-MAT and 3D CDT are shown in Table 1 and Table 2,
respectively.

1.2 Organization

The paper is organized as follows. In Section 2 we present computation models of the
CREW PRAM and basic operations. In Section 3 we state the 3D BB-MAT problem
and propose the corresponding 3D BB-MAT algorithm. Section 4 shows the 3D CDT
problem that is related to the 3D BB-MAT problem and also develops the 3D CDT
algorithm. In Section 5 we implement an MPI program to verify the 3D CDT algorithm
on an AMD Opteron Model 270 (2.0 GHz/1M L2) cluster system located at National
Taiwan University of Science and Technology (http://www.ntust.edu.tw/). Finally,
some concluding remarks are included in the last section.

2 The Computation Model and Basic Operations

We first present the CREW PRAM computation model in Section 2.1. In the following
section, we describe several basic data operations and lemmas useful for the medial
axis transform problem.

2.1 The Computation Model

The parallel shared-memory model is an extension of the sequential model, where the
parallel shared-memory model consists of a number of identical processors, each of
which has its own local memory to execute its own program and to access its own data.
All processors communicate and exchange data through a common global memory that
is referred to as shared memory. In this paper, we use the single instruction multiple
data stream (SIMD) model for the parallel random access machine (PRAM). That is, all
processors operate synchronously under the control of a common clock, and in each

 3D Block-Based Medial Axis Transform and Chessboard Distance Transform 87

unit of time, all active processors execute the same instruction, but with different data.
There are several variations of the PRAM model. The most common three models are
the exclusive read exclusive write (EREW) PRAM, the concurrent read exclusive write
(CREW) PRAM and the concurrent read concurrent write (CRCW) PRAM. In the
EREW PRAM model, a single memory location cannot be simultaneously accessed by
more than one processor. The CREW PRAM model allows multiple processors to
simultaneously access a single memory location for reading, but not simultaneously to
write. The CRCW PRAM model allows multiple processors to simultaneously access a
single memory location for either read or write instructions. For simplicity, we assume
that it takes a unit of time to do either an arithmetic instruction or a shared memory
access for any PRAM model. The parallel computation model upon which our algo-
rithms are based is the CREW PRAM.

2.2 Basic Operations

In this section, we describe several basic data operations and lemmas that are useful in
developing the 3D BB-MAT algorithm given in Section 3.
‧ Prefix Sums (PS): Given a data sequence ds0, ds1,…, dsN-1, the operation of com-

puting the Prefix Sums (PS) of N partial sums is to find PSi = ds0 + ds1 + …+ dsi,
where 0 ≤ i ≤ N-1.

‧ Postfix Sums (POS): Given a data sequence ds0, ds1,…, dsN-1, the operation of
computing the Postfix Sums (POS) of N partial sums is to find POSi = dsi+ dsi+1 +
…+ dsN-1, where 0 ≤ i ≤ N-1.

‧ Summation Operation (SO): Given a data sequence ds0, ds1,…, dsN-1, the operation
of computing the summation of N-item data is to find SO = ds0+ ds1,…, + dsN-1.

Lemma 1 [16]. The Prefix Sums (PS) can be computed in O(logN) time for a data
sequence of size N on the EREW and CREW PRAM. Lemma 1 leads to the following
corollary.

Corollary 1. The Postfix Sums (POS) can be computed in O(logN) time for a data
sequence of size N on the EREW and CREW PRAM.

Assume that we have a 2D N×N binary image M, with m(i, j)∈{0,1}, 0 ≤ i, j ≤ N-1,
and a pixel of value 0 (resp. 1) is denoted as a white (resp. black) pixel correspondingly.
Let a specified pixel p with coordinates (ip, jp) be denoted as p(ip, jp), where ip and jp are
the coordinates along I-axis and J-axis of the 2D coordinate system, respectively. The
origin of the 2D coordinate system is at the top-left corner of the image M and the
corresponding pixel is m(0, 0). The 2D dominance is defined as follows:

Definition 1. In a 2D binary image, pixel p1 dominates pixel p2 (denoted by p2 p p1) if
ip2 ≤ ip1 and jp2 ≤ jp1, where (ip1, jp1) and (ip2, jp2) are the coordinates of pixels p1 and p2,
respectively.

Definition 2. The number of pixels Q(p) of black pixels from B1 which is satisfied with
i ≤ ip and j ≤ jp in a 2D rectangle (or square) with sides parallel to the coordinate axes
I and J is determined by p. That is, Q(p) is the number of pixels in B1 which are
dominated by p, where B1 = {b1(i, j) | m(i, j) = 1 of M} is a set of all black pixels of a
binary image M.

88 S.-Y. Lin et al.

For a pixel p(ip, jp), 0 ≤ ip, jp ≤ N-1, Q(p) can be computed by the following equation.

Q(p) = ∑ ∑
= =

p p

 0 0
1),(

j

j

i

i
jib (2-1)

From Definition 1 and Definition 2, we have the following equation for the 2D domi-
nance counting.

‧ 2D Dominance Counting [17]: The number H(p1, p2, p3, p4) of pixels contained in a
2D rectangle (or square) p1 p2 p3 p4 is given by H(p1, p2, p3, p4) = (Q(p3) + Q(p1)) -
(Q(p2) + Q(p4)). (2-2)

Based on the definition of the 2D dominance (i.e., Definitions 1 and 2), the 3D
dominance can be extended to add K-axis for the 3D coordinate system. Given a 3D
N×N×N binary image V, where V = {v(i, j, k)∈{0,1}, 0 ≤ i, j, k ≤ N-1}, then a voxel of
value 0 (resp. 1) is defined as a white (resp. black) voxel in the image V. The origin of
the 3D coordinate system is at the top-left-front corner of the image V and the corre-
sponding voxel is v(0, 0, 0). Let D1= {d1(i, j, k) | v(i, j, k) = 1 of V} be a set of all black
voxels of V. A specified voxel v with coordinates (iv, jv, kv) can be denoted as v(iv, jv,
kv), where iv, jv and kv are the coordinates along the I-axis, J-axis and K-axis of the 3D
coordinate system, respectively. We say that a 3D_Q(v) is the number of voxels in D1
which are dominated by v, where, 0 ≤ iv, jv, kv ≤ N-1. Then 3D_Q(v) can be computed
by the following equation:

3D_Q(v)=),,(
v v v

0 0 0
1∑ ∑ ∑

= = =

k

k

j

j

i

i
kjid (2-3)

Definition 3. The number of voxels 3D_Q(v) of black voxels from D1 that are satisfied
with i ≤ iv, j ≤ jv and k ≤ kv in the rectangular parallelepiped area (or cube) with sides
parallel to the coordinate axes I, J, and K is determined by v. That is, 3D_Q(v) is the
number of voxels in D1 that are dominated by v, where D1 = {d1(i, j, k) | v(i, j, k) = 1 of
V } is a set of all black voxels of a 3D binary image V.

From Definition 3 and Eq. (2-3), we have the following lemma for the 3D domi-
nance counting.

Lemma 2. The 3D dominance counting for the number H(v1, v2, v3, v4, v5, v6, v7, v8) of
voxels contained in a 3D rectangular parallelepiped (or cube) v1 v2 v3 v4 v5 v6 v7 v8 is
given by H(v1, v2, v3, v4, v5, v6, v7, v8) = (3D_Q(v7) + 3D_Q(v4) + 3D_Q(v5) +
3D_Q(v2)) - (3D_Q(v8) + 3D_Q(v3) + 3D_Q(v6) + 3D_Q(v1)). (2-4)

Proof: Omitted.

3 The 3D BB-Mat Problem and the 3D BB-Mat Algorithm

In Section 3.1 we state the problem of 3D block based medial axis transform (3D
BB-MAT). We then develop the 3D BB-MAT algorithm, which is based on the basic
operations stated in Section 2.2, in Section 3.2.

 3D Block-Based Medial Axis Transform and Chessboard Distance Transform 89

3.1 The 3D BB-Mat Problem

Given a 3D N×N×N binary image V, where V = {v(i, j, k)∈{0,1}, 0 ≤ i, j, k ≤ N-1}.
Let D1 = {d1(i, j, k) | v(i, j, k) = 1 of V } be a set of all black voxels of V, and D0 = { d0(i,
j, k) |v(i, j, k) = 0 of V} be a set of all white voxels of V. According to Eq. (1-2), we
define the 3D BB-MAT of an image V as follows:

3D BB-MAT(v(i, j, k)) =

In order to develop our algorithm, we can define the 3D BB-MAT problem by array
3DBBMAT(v(i, j, k)) of size N3 as follows.

Definition 4. 3DBBMAT(v(i, j, k)) =

Φ is the side length of the maximal cube of 1-voxels for each voxel v(i, j, k), and λ is

the subset of Φ , where 0 ≤ λ ≤ Φ -1. The maximal Φ is stored in array
3DBBMAT(v(i, j, k)).

The number of voxels 3D_Q(v) dominated by voxel v is based on Eq.(2-3) as stated in
Section 2.2. Let 3D_Q-1(v) represent the reverse-dominated voxels of 3D_Q(v). To
solve the 3D BB-MAT problem, we redefine the 3D dominance relation in the
following.

Definition 5. In a 3D binary image, voxel v1 is reverse-dominated by voxel v2 (denoted
by v2 f v1) if iv2 ≥ iv1, jv2 ≥ jv1 and kv2 ≥ kv1, where (iv1, jv1, kv1) and (iv2, jv2, kv2) are
the coordinates of voxels v1 and v2, respectively.

Based on Definition 5, the number of voxels 3D_Q-1(v) reverse-dominated by voxel v
can be computed by Eq.(3-2).

3D_Q-1(v)= (3-2)

Like 3D_Q-1(v), we can compute 3D_Q-1(x) in a similar way. The 3D_Q-1(x) of all
voxels (ix, jx, kx), where 0 ≤ iv ≤ ix ≤ N-1, 0 ≤ jv ≤ jx ≤ N-1, and 0 ≤ kv ≤ kx ≤ N-1, can be
computed by Eq.(3-3).

3D_Q-1(x) = ∑ ∑ ∑
−

=

−

=

−

=

1 1 1

1
x x x

),,(
N

kk

N

jj

N

ii
kjid , where 0 ≤ iv ≤ ix ≤ N-1, 0 ≤ jv ≤ jx ≤ N-1,

and 0 ≤ kv ≤ kx ≤ N-1. (3-3)

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧
≤

≤≤

)-(

otherwise 0,

; = k) j, v(i, if ,}.-N λ+k λ,+jλ,+i and

 ,-Φ λ 0 for , = λ) + k λ, +j λ, + v(i | {Φ

13

11

11max

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∈

∈

D kjiv if

D kjiv if direction back-right-lower the in

cube largest the of height the

0

1

),, (,0

;),, (,

∑ ∑ ∑
−

=

−

=

−

=

1 1 1

1
v v v

),,(
N

kk

N

jj

N

ii
kjid

90 S.-Y. Lin et al.

Lemma 3. The 3D dominance counting for the number H-1(v1, v2, v3, v4, v5, v6, v7, v8)
of voxels contained in a 3D rectangular parallelepiped (or cube) v1 v2 v3 v4 v5 v6 v7 v8 is
given by H-1(v1, v2, v3, v4, v5, v6, v7, v8) = (3D_Q-1(v8) + 3D_Q-1(v3) + 3D_Q-1(v6) +
3D_Q-1(v1))-(3D_Q-1(v7)+3D_Q-1(v4)+3D_Q-1(v5)+3D_Q-1(v2)). (3-4)

Proof: Omitted

Lemma 4. Given a 3D N×N×N binary image V, and a black voxel v(i, j, k), 0 ≤ i, j,
k ≤ N-1, the 3D block-based medial axis transform at v(i, j, k) isϕ and is stored in array

3DBBMAT(v(i, j, k)), where ϕ = max{ Φ | v(i + λ , j + λ , k + λ) = 1, for

0 ≤ λ ≤ Φ -1, and i + λ , j + λ , k + λ ≤ N-1} if and only if

H-1(v(i, j, k), v(i + Φ , j, k), v(i + Φ , j + Φ , k), v(i, j + Φ , k) , v(i, j, k + Φ), v(i + Φ , j,
k + Φ), v(i + Φ , j + Φ , k + Φ), v(i, j + Φ , k + Φ)) = Φ 3. (3-5)

Proof: Omitted

3.2 The 3D BB-Mat Algorithm

The 3D block-based medial axis transform of an image algorithm (Algorithm
3DBBMAT) consists of three major steps. First, for each voxel v(i, j, k), 0 ≤ i, j,
k ≤ N-1, compute the dominance number 3D_Q-1(v(i, j, k)) of the image V by Eq.(3-3).
Then, for each black voxel v(i, j, k), 0 ≤ i, j, k ≤ N-1, compute the 1-voxels possible cube
whose side length is Φ , 0 ≤ Φ ≤ N-1, by Eq.(3-5). To identify whether a cube of size

3Φ is obtained by Eq.(3-5), we use a binary search technique to find the maximal

value mΦ from Φ , 0 ≤ Φ ≤ N-1. As we can see, if there is a cube of size σ 3 cov-

ering voxel v(i, j, k), then it is always covered by a cube of size ρ 3, 0 ≤ ρ ≤ σ . This

property provides a method to find the maximal value mΦ from Φ , 0 ≤ Φ ≤ N-1, by

using the binary search over logN iterations. Finally, if 3D_Q-1(v(0, 0, 0)) = N3 then
3DBBMAT(v(0, 0, 0)) = N; otherwise, the 3D block-based medial axis transform is
computed by the following equation.

3DBBMAT(v(i, j, k)) =

The 3D block-based medial axis transform algorithm (Algorithm 3DBBMAT) is
given below.

Algorithm 3DBBMAT
Input: A 3D N×N×N binary image V with v(i, j, k)∈{0,1}, 0 ≤ i, j, k ≤ N-1, where
each voxel is loaded in processor PE(i, j, k).
Output: 3DBBMAT(v(i, j, k)), 0 ≤ i, j, k ≤ N-1.
Step1: Compute the dominance number 3D_Q-1(v(i, j, k)), 0 ≤ i, j, k ≤ N-1, of the image
V.

⎭
⎬
⎫

⎩
⎨
⎧ ≤≤

 otherwise. 0,

; 1- , , 0 1,=) , ,(if), , ,(Φm Nkjikjivkji

 3D Block-Based Medial Axis Transform and Chessboard Distance Transform 91

1.1 For each pair of specified indices j and k, processors PE(i, j, k), 0 ≤ i ≤ N-1, compute
the postfix sum of v(i, j, k) by Corollary 1 and store the result in the local variable
POS(i, j, k).
1.2 Then for each pair of specified indices i and k, processors PE(i, j, k), 0 ≤ j ≤ N-1,
compute the postfix sum of POS(i, j, k) by Corollary 1 and store the result back to the
local variable POS(i, j, k).
1.3 Finally, for each pair of specified indices i and j, processors PE(i, j, k), 0 ≤ k ≤ N-1,
compute the postfix sum of POS(i, j, k) by Corollary 1 and store the final result to the
local variable 3D_Q-1(v(i, j, k)).
Step2: Compute the maximal cube for the voxel located at v(i, j, k). Each processor
PE(i, j, k) with a black voxel v(i, j, k), 0 ≤ i, j, k ≤ N-1, performs a binary search pro-

cedure to find the maximal value mΦ from Φ , 0 ≤ Φ ≤ N-1. Let left, right and

middle be the integer variables.
For (left = 0, right = N-1) to left < right pardo

2.1 Let tΦ = middle = ⎡ ⎤2)rightleft(+ .

2.2 Read eight dominance numbers from shared memory that are 3D_Q-1(v(i, j, k)),

3D_Q-1(v(i + tΦ , j, k)), 3D_Q-1(v(i + tΦ , j + tΦ , k)), 3D_Q-1(v(i, j + tΦ , k)),

3D_Q-1(v(i, j, k+ tΦ)), 3D_Q-1(v(i + tΦ , j, k + tΦ)), 3D_Q-1(v(i + tΦ , j + tΦ , k

+ tΦ)), and 3D_Q-1(v(i, j + tΦ , k + tΦ)), respectively.

2.3 Based on the eight dominance numbers obtained in Step 2.2, compute the 3D

dominance counting for the number H-1(v(i, j, k), v(i + tΦ , j, k), v(i + tΦ , j + tΦ , k),

v(i, j + tΦ , k), v(i, j, k + tΦ), v(i + tΦ , j, k + tΦ), v(i + tΦ , j + tΦ , k + tΦ), v(i, j

+ tΦ , k + tΦ)) by Eq.(3-5).

2.4 If H-1= (tΦ)3 then set left = middle and mΦ (i, j, k) = tΦ ; else right = middle -1.

End for;
Step3: For each processor PE(i, j, k), 0 ≤ i, j, k ≤ N-1, set 3DBBMAT(v(i, j, k)) = mΦ (i, j,

k), if v(i, j, k) = 1; 3DBBMAT(v(i, j, k)) = 0, if v(i, j, k) = 0.

Theorem 1. Let v(i, j, k), 0 ≤ i, j, k ≤ N-1, be a 3D N×N×N binary image. Initially,
each image voxel v(i, j, k) is loaded in processor PE(i, j, k), respectively. The 3D
block-based medial axis transform can be executed in O(logN) time on the CREW
PRAM model using N×N×N processors.

Proof: Omitted.

4 The 3D CDT Problem and the 3D CDT Algorithm

Section 4.1 defines the 3D CDT problem from the 2D CDT problem. Section 4.2 es-
tablishes the relationship between the 3D CDT problem and the 3D BB-MAT problem.
In Section 4.3, Algorithm 3DCDT is presented.

92 S.-Y. Lin et al.

4.1 The 3D CDT Problem

Assume a 3D N×N×N binary image V, with v(i, j, k)∈{0,1}, 0 ≤ i, j, k ≤ N-1, where 1
denotes a foreground voxel, 0 denotes a background voxel, and the voxel v(0, 0, 0) is
located at the top-left-front corner of the 3D binary image V. Let D1 ={d1(i, j, k) | v(i, j,
k) = 1 of V} be the set of all foreground voxels of V. According to Eq. (1-1) as stated in
Section 1, the 3D chessboard distance transform (3D CDT) of image V is to find an
array

3DCDT(v(i, j, k)) =
1),,(

min
Dzyx ∈

{max(|i - x|, |j - y|, |k - z|)}, for 0 ≤ i, j, k ≤ N-1. (4-1)

4.2 Compute the 3D CDT Problem By the 3D BB-Mat Problem

From the 3DBBMAT(v(i, j, k)) of an image V, we say that it is a “dense 3D BB-MAT”
or “sparse 3D BB-MAT” if the voxels of the outside region of an image V are all
background voxels or foreground voxels, respectively. The definition of the “dense 3D
BB-MAT” is the one we presented in Section 3.1. In the following, we extend
the definition of 3D BB-MAT and 3D CDT problems in eight different directions, the
lower-right-back (LRB), the lower-right-front (LRF), the lower-left-back (LLB),
the lower-left-front (LLF), the upper-right-back (URB), the upper-right-front (URF),
the upper-left-back (ULB), and the upper-left-front (ULF), respectively. For any image
V, we use an array LRB_MAT(v(i, j, k)) to denote the side length of the maximal cube
of the lower-right-back direction of v(i, j, k). The definition of the LRB_MAT(v(i, j, k))
is the same as that of the MAT presented in Section 3.1. Similarly, the MAT in the
lower-right-front, the lower-left-back, the lower-left-front, the upper-right-back, the
upper-right-front, the upper-left-back, and the upper-left-front directions can be also
defined by LRF_MAT(v(i, j, k)), LLB_MAT(v(i, j, k)), LLF_MAT(v(i, j, k)),
URB_MAT(v(i, j, k)), URF_MAT(v(i, j, k)), ULB_MAT(v(i, j, k)), and ULF_MAT(v(i,
j, k)), correspondingly. We now define LRB_CDT(v(i, j, k)), LRF_CDT(v(i, j, k)),
LLB_CDT(v(i, j, k)), LLF_CDT(v(i, j, k)), URB_CDT(v(i, j, k)), URF_CDT(v(i, j, k)),
ULB_CDT(v(i, j, k)), and ULF_CDT(v(i, j, k)) to denote the CDT for a 3D image V in
eight different directions as the same for those directions of the MAT described above.
It is easy to observe that 3DCDT(v(i, j, k)) is the minimum of these eight components.
That is,

3DCDT(v(i, j, k)) = min{LRB_CDT(v(i, j, k)), LRF_CDT(v(i, j, k)), LLB_CDT(v(i,
j, k)), LLF_CDT(v(i, j, k)), URB_CDT(v(i, j, k)), URF_CDT(v(i, j, k)), ULB_CDT(v(i,
j, k)), ULF_CDT(v(i ,j, k))}, for 0 ≤ i, j, k ≤ N-1, where, (4-2)

LRB_CDT(v(i, j, k)) = min
1- 1,- 1,- ,),,(1 NzkNyjNxiDzyx ≤≤≤≤≤≤∈
 {max(|i - x|, |j - y|, |k - z|)},

LRF_CDT(v(i, j, k)) = min
 0 1,- 1,- ,),,(1 kzNyjNxiDzyx ≤≤≤≤≤≤∈

 {max(|i - x|, |j - y|, |k - z|)},

LLB_CDT(v(i, j, k)) = min
1- z , 0 1,- ,),,(1 NkjyNxiDzyx ≤≤≤≤≤≤∈

 {max(|i - x|, |j - y|, |k - z|)},

LLF_CDT(v(i, j, k)) = min
 0 , 0 1,- ,),,(1 kzjyNxiDzyx ≤≤≤≤≤≤∈

 {max(|i - x|, |j - y|, |k - z|)},

 3D Block-Based Medial Axis Transform and Chessboard Distance Transform 93

URB_CDT(v(i, j, k)) = min
1- 1,- , 0 ,),,(1 NzkNyji xDzyx ≤≤≤≤≤≤∈
 {max(|i - x|, |j - y|, |k - z|)},

URF_CDT(v(i, j, k)) = min
 0 1,- , 0 ,),,(1 kzNyji xDzyx ≤≤≤≤≤≤∈

 {max(|i - x|, |j - y|, |k - z|)},

ULB_CDT(v(i, j, k)) = min
1- ,0 , 0 ,),,(1 Nzkjyi xDzyx ≤≤≤≤≤≤∈

 {max(|i - x|, |j - y|, |k - z|)},

ULF_CDT(v(i, j, k)) = min
 0 , 0 , 0 ,),,(1 kzjyi xDzyx ≤≤≤≤≤≤∈

 {max(|i - x|, |j - y|, |k - z|)}.

Theorem 2. Given a 3D N×N× N binary image V, with v(i, j, k)∈{0,1}, 0 ≤ i, j,
k ≤ N-1, the 3D chessboard distance transform of image V denoted as 3DCDT(v(i, j, k))
can be computed as follows.

3DCDT(v(i, j, k)) = min{LRB_CDT(v(i, j, k)), LRF_CDT(v(i, j, k)), LLB_CDT(v(i, j,
k)), LLF_CDT(v(i, j, k)), URB_CDT(v(i, j, k)), URF_CDT(v(i, j, k)), ULB_CDT(v(i, j,
k)), ULF_CDT(v(i, j, k))},

= min{LRB_MAT(v'(i, j, k)), LRF_MAT(v'(i, j, k)), LLB_MAT(v'(i, j, k)),
LLF_MAT(v'(i, j, k)), URB_MAT(v'(i, j, k)), URF_MAT(v'(i, j, k)), ULB_MAT(v'(i, j,
k)), ULF_MAT(v'(i, j, k))}, for 0 ≤ i, j, k ≤ N-1. (4-3)

Proof: Omitted.

4.3 The 3D CDT Algorithm

We assume that the voxels of the outside region of image V are all background voxels.
Clearly, those of the outside region of image V' are all foreground voxels. The cor-
rectness of the following algorithm is based on Theorem 2.

Algorithm 3DCDT
Input: A 3D N×N×N binary image V with v(i, j, k)∈{0,1}, 0 ≤ i, j, k ≤ N-1.
Output: 3DCDT(v(i, j, k)), 0 ≤ i, j, k ≤ N-1.
Step1: Invert the binary image V from v(i, j, k) to v'(i, j, k) of V', where

v'(i, j, k) =

Step2: Assume that the outside region of image V is all background voxels. The outside
region of image V' is then all foreground voxels. Then, apply Algorithm 3DBBMAT
to binary image V' to compute LRB_MAT(v'(i, j, k)), LRF_MAT(v'(i, j, k)),
LLB_MAT(v'(i, j, k)), LLF_MAT(v'(i, j, k)), URB_MAT(v'(i, j, k)), URF_MAT(v'(i, j,
k)), ULB_MAT(v'(i, j, k)), and ULF_MAT(v'(i, j, k)), respectively.
Step3: Compute 3DCDT(v(i, j, k)), by Eq.(4-3).

Theorem 3. Let v(i, j, k), 0 ≤ i, j, k ≤ N-1, be a 3D N×N×N binary image. Initially,
each image voxel v(i, j, k) is loaded in processor PE(i, j, k). The 3D chessboard distance
transform can be computed in O(logN) time on the CREW PRAM model using
N×N×N processors.

Proof: Omitted.

⎭
⎬
⎫

⎩
⎨
⎧

 otherwise.

; = k) j, v(i, if

 1

1 0

94 S.-Y. Lin et al.

5 The Experimental Results of the 3D CDT Problem

Since the PRAM model is not available in the real world, we have implemented an MPI
program to verify the 3D CDT parallel algorithm on an AMD Opteron Model 270 (2.0
GHz/1M L2) cluster system with computing power 0.92 teraflops located at National
Taiwan University of Science and Technology (http://www.ntust.edu.tw/). The running
time and CPUs used for the problem of size 32×32×32 are shown in Fig. 2. Also, note
that the upper curve of “32×32×32” represents the experimental result of the cluster
system, while the lower curve of “Optimal 32 × 32× 32” represents the theoretical
optimal curve of the PRAM model. A theoretical optimal is the optimal that is the same
value from one processor to more processors for the product of the running time and
CPUs. Hence, the communication time can be almost ignored for the “Optimal
32×32×32”. Based on the experimental result of the cluster system, the computation
time for the problem size of “32×32×32” cannot be further reduced when the number
of processors used is more than four. This is due to the fact that AMD Opteron Model
270 is not the shared-memory architecture (PRAM model). With a larger number of
processors, the communication time will worsen due to data exchanging. In fact, the
MPI code is very communication intensive when the problem size is not big enough
and the number of processors used is increased. In Fig. 3, the experimental result shows
that the running time for the problem of size 16 × 16 × 16 will increase when the
number of processors used is more than one. n parallel algorithms, the speedup is

Fig. 2. The time and CPUs used for the CDT of size 32×32×32.

Fig. 3. The time and CPUs used for the CDT of size
16×16×16

Fig. 4. The comparison for the
speedup for the CDT of size
32×32×32, 64×64×64, and 96×96×96,
respectively

 3D Block-Based Medial Axis Transform and Chessboard Distance Transform 95

usually used to compare the relative performance of the parallel computations. Let P be
a given computational problem and let n be its input size. Denote the sequential com-
plexity of P by T*(n). Let A be a parallel algorithm that solves P in time Tp(n) on a
parallel computer with p processors. The definition of speedup [16] achieved by A is
Sp(n) = T*(n) / Tp(n). The speedup curves for the three different problem sizes,
32×32×32, 64×64×64, and 96×96×96 are shown in Fig. 4, respectively. As we can
see, for each problem size, the speedup is saturated when the number of processors used
is more than four. On the other hand, the speedup is slightly increased with the problem
size linearly increases in each dimension.

6 Concluding Remarks

In this paper, we first present an O(logN) time parallel algorithm for solving the three
dimensional block-based medial axis transform problem using N3 processors on the
CREW PRAM model. The relationship between 3D BB-MAT and 3D CDT is then
derived. Based on the relationship derived in this paper, the 3D CDT can be also
computed in O(logN) time using N3 processors on the CREW PRAM model. To the best
of our knowledge, the presented results are the first 3D CDT algorithm known. In
addition, we have implemented an MPI program to verify the proposed CDT parallel
algorithm. The experimental results gave evidence that the speedup saturated when the
number of processors used was more than four, regardless of the problem size. Fur-
thermore, the speedup is slightly increased when the problem size linearly increases in
each dimension; this implies that the parallel computer (i.e., cluster system) is more
suitable for solving problems with bigger size. On the contrary, when more processors
are used for a problem whose size is not big enough, the running time for the problem
with a small size could be increased due to communication overhead. In the future
study, if one can solve the 3D CDT problem in less than O(logN) time complexity, then
the 3D BB-MAT problem can also be solved with the same time complexity.

References

1. Rosenfeld, A., Pfalz, J.L.: Sequential operations in digital picture processing. Journal of the
ACM, 471–494 (1966)

2. Blum, H.: Models for the perception of speech and visual form, vol. 11, pp. 362–380. MIT
Press (1967)

3. Schwarzkopf, O.: Parallel computation of distance transforms. Algorithmica, 685–697
(1991)

4. Montanvert, A.: Medial line: graph representation and shape description. In: Proc. of the 8th
International Conference on Pattern Recognition, pp. 430–432 (1986)

5. Chandran, S., Kim, S.K., Mount, D.M.: Parallel computational geometry of rectangles.
Algorithmica, 25–49 (1992)

6. Jenq, J.F., Sahni, S.: Serial and parallel algorithms for the medial axis transform. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 1218–1224 (1992)

96 S.-Y. Lin et al.

7. Ramanathan, M., Gurumoorthy, B.: Constructing medial axis transform of extruded and
revolved 3D objects with free-form boundaries. Computer-Aided Design, 1370–1387
(2005)

8. Morrison, P., Zou, J.J.: An effective skeletonization method based on adaptive selection of
contour points. In: Proc. of the 3th International Conference on Information Technology and
Applications, pp. 644–649 (2005)

9. Remy, E., Thiel, E.: Medial axis for chamfer distances: computing look-up tables and
neighbourhoods in 2D or 3D. Pattern Recognition Letters, 649–661 (2002)

10. Remy, E., Thiel, E.: Look-Up tables for medial axis on squared Euclidean distance trans-
form. In: Proc. of the 11th Discrete Geometry for Computer Image, pp. 224–235 (2003)

11. Wang, Y.R., Horng, S.J.: An O(1) time algorithm for the 3D Euclidean distance transform
on the CRCW PRAM Model. IEEE Trans. on Parallel and Distributed Systems, 973–982
(2003)

12. Wang, Y.R., Horng, S.J.: Parallel algorithms for arbitrary dimensional Euclidean distance
transforms with applications on arrays with reconfigurable optical buses. IEEE Trans. on
System, Man, and Cybernetics — Part B: Cybernetics, 517–532 (2004)

13. Wang, Y.R.: Fast algorithms for block-based medial axis transform on the LARPBS. In:
Proc. of the IEEE International Conference on Systems, Man, and Cybernetics (2005)

14. Lin, S.Y., Horng, S.J., Kao, T.W., Wang, Y.R.: An O(1) time parallel algorithm for the
dominance counting and 3D block-based medial axis transform on AROB. In: Proc. of the
6th International Conference on Parallel and Distributed Computing Applications and
Technologies, pp. 603–609 (2005)

15. Lee, Y.H., Horng, S.J.: Chessboard distance transform and the medial axis transform are
interchangeable. In: Proc. of the IEEE Symposium on Parallel and Distributed Processing,
pp. 424–428 (1996)

16. JáJá, J.: An introduction to parallel algorithms. Addison-Wesley, Reading (1992)
17. Preparata, F.P., Shamos, M.I.: Computational geometry an introduction. Springer, Heidel-

berg (1985)

A General Approach to Predict the Performance

Order of TSP Family Problems�

P. Fritzsche, D. Rexachs, and E. Luque

Computer Architecture and Operating Systems Department
University Autonoma of Barcelona. Spain

Abstract. Parallel computers provide an efficient and economical way
to solve large-scale and/or time-constrained scientific, engineering, and
industry problems. Consequently, there is a need to predict the perfor-
mance order of both deterministic and non-deterministic parallel
algorithms.

The performance prediction of the traveling salesman problem (TSP)
is a challenging problem because similar input data sets may cause
significant variability in execution times. Parallel performance of data-
dependent algorithms depends on the problem size, the number of pro-
cessors, and other parameters. Discovering the main other parameters is
the real key to obtain a good estimation of performance order.

This paper presents a novel methodology to the problem of predicting
the performance of a parallel algorithm for solving the TSP. The entire
process explores data in search of patterns and/or relationships detecting
the main parameters that affect performance. Then, it uses the measured
values for this limited number of inputs to produce a multiple-linear-
regression model. Finally, the regression equation allows for predicting
how the algorithm will respond when given new input data sets. The
preliminary experimental results are quite promising.

Keywords: Performance prediction, TSP, Data-dependent algorithms,
Parallel computing.

1 Introduction

Parallel computers provide an efficient and economical way to solve large-scale
and/or time-constrained scientific, engineering, and industry problems. Conse-
quently, there is a need to predict the performance order of both deterministic
and non-deterministic parallel algorithms. Computer designers, professional en-
gineers, and scientists are interested in obtaining realistic figures for the expected
performance.

The parallel performance prediction of data-dependent algorithms is an ex-
tremely challenging problem because similar input data sets may cause significant
variability in execution times. One of the nice features of this kind of algorithms
� This work was supported by the CICYT-Spain under contracts TIN 2004-03388 and

TIN 2007-64974.

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 97–108, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

98 P. Fritzsche, D. Rexachs, and E. Luque

is that its performance does not depend only on the problem size and on the num-
ber of processors. Other parameters must to be taken into account, the values of
which are data-dependent. Discovering the main other parameters is the real key
to obtain a good estimation of performance order. Good examples of this class of
programs are the sorting algorithms, the searching algorithms, the graph parti-
tion [1], the knapsack problem, the bin packing [2], the motion planning [3], and
the traveling salesman problem (TSP) [4]. Also there are many practical problems
that can be formulated as TSP problems [5, 6].

This paper presents a novel methodology to the problem of predicting the
performance of a parallel algorithm for solving the TSP. This arises out of the
need to give an answer to a great number of problems that are normally set
aside. Any minimum contribution in the non-deterministic area represents a
great advance due to the lack of general knowledge. Not only it is important to
think in the problem that is solved but also in the involved benefit for its family.

The general methodology begins by collecting execution-time data for a con-
siderable number of TSP instances. A well-designed experiment guides the ex-
perimenters in choosing what experiments actually need to be performed. This
is a complex task and the experiments should provide a representative sample.
Then, a data-mining process explores these collected data in search of patterns
and/or relationships detecting the main parameters that affect performance.
These patterns and/or relationships are modelled numerically in order to gen-
erate an analytical formulation of the execution time. As the methodology is
based on a black-box approach, the measured values for this representative sam-
ple of inputs are used to produce a multiple-linear-regression model. Finally, the
regression equation allows for predicting how the algorithm will perform when
given new input data sets.

A parallel Euclidean TSP implementation, called global pruning algo-
rithm, has been developed and studied. It is used to analyze the influence of
indeterminism in performance prediction, and also to show the usefulness of
the methodology. It follows the Master-Worker programming paradigm. It is a
branch-and-bound algorithm which recursively searches all possible paths and
prunes large parts of the search space by maintaining a global variable contain-
ing the length of the shortest path found so far. If the length of a partial path is
bigger than the current minimal length, this path is not expanded further and a
part of the search space is pruned. Its execution time depends on the number of
cities (C), the number of processors (P), and other parameters. As a result of
our investigation, right now the sum of the distances from one city to the other
cities (SD) and the mean deviation of SDs values (MDSD) are the numerical
parameters characterizing the different input data beyond the number of cities.

The preliminary experimental results of predictions are quite promising. An
important fact has been reached beyond was originally sought. By looking each
combination of SDj and MDSD values coming from C cities, it is also possible
to choose the best starting city for the TSP problem. This means invests less
time in order to obtain the minimal path.

A General Approach to Predict the Performance Order 99

The rest of the paper is organized as follows. The next section presents a
novel methodology to the problem of predicting the performance of a parallel
algorithm for solving the traveling salesman problem. Section 3 describes the
TSP problem. Also, in this section, a parallel TSP algorithm implementation
is discussed. Section 4 focus on of discovering process carried out to find the
significant input parameters. Finally, Section 5 summarizes and draws the main
conclusions of this work.

2 Methodology

The novel methodology attempts to estimate the performance order of a parallel
algorithm that solves the TSP problem. The defined methodology consists of
two main phases: the extraction of knowledge and the prediction, see Fig. 1.
The hypotheses formulation, the design and composition of experiments, the
TSP execution for the selected input data, the knowledge discovery in databases
(KDD) process, the understanding of the model, and the quality analysis are
stages of the extraction of knowledge phase.

2.1 Extraction of Knowledge

Hypotheses formulation: The hypotheses formulation consists of defining
the key parameters that can affect the execution time of the studied appli-
cation. First of all, it is important to understand the application domain and
the relevant prior knowledge, and to analyze their behavior step by step, in

Fig. 1. The novel methodology

100 P. Fritzsche, D. Rexachs, and E. Luque

a deep way. It is an arduous job that requires specialists to manually or au-
tomatically identify the relevant issues. Finding the correct hypotheses (the
main parameters) is the basis to obtain a good capacity of prediction. In-
cluding too many parameters may lead to an accurate but too complicated
or even unsolvable model. Hence, great care should be taken in selecting
parameters and a reasonable trade-off should be made. At the end, it is a
try-and-error method in the way to identify some of the relevant parameters.

Design and composition of experiments: Defining an experiment involves
articulating a goal, choosing an output that characterizes an aspect of that
goal and specifying the data that will be used in the study. A well-designed
experiment guides the experimenters in choosing what experiments actu-
ally need to be performed. The experiments should provide a representative
sample.

TSP execution: The TSP algorithm implementation reads an experiment and
obtains their results. This action is done by each experiment coming from a
representative sample.

KDD process: A KDD process analyzes execution times results from different
perspectives and summarizes these into useful information. A brief summa-
rization of this process involves reading the data and constructing a model.
Obtaining a good model that is really useful to the problem requires many
careful considerations and much objective hard work.

Understanding a data-mining model: Once a data set has been mined,
the process of understanding a data-mining model created from the results
involves many different aspects. Mainly, the model summary shows the con-
junctions that are important to describing the goal.

Data-mining quality analysis: The validation of hypotheses involves com-
paring the results to known suppositions. Also the quality analysis has to
include utility, newness, and interest measurements. This stage can implicate
a backward motion to previous steps in order to obtain extra or more precise
information.

Building a regression model: Once the main parameters that affect per-
formance have been obtained, their measured values are used to produce a
multiple-linear-regression model (MLR model). It allows including the ef-
fects of several input variables that are all linearly related to a single output
variable (T = b0 + b1x1 + . . . + bnxn). Hence, great care should be taken in
analyzing this first approximation because it is difficult to know the degree of
complexity of the relationship between the parameters and execution time.

Quality analysis after developing a regression model: From the scien-
tific point of view is essential to find confidence intervals for the regression
parameters to provide some indication of how well they model the measured
values. Taking this as a basis, it could determine the number of elements in
the sample.

2.2 Prediction

The regression equation is used to predict how the analyzed algorithm imple-
mentation will perform when given a new input data set. The b0, b1, , bn values

A General Approach to Predict the Performance Order 101

are the estimated regression parameters. Replacing x1, x2, , xn with real values
in the equation, it is possible to predict the time required.

3 Traveling Salesman Problem

The traveling salesman problem (TSP) is one of the most famous problems (and
the best one perhaps studied) in the field of the combinatorial optimization.
In spite of the apparent simplicity of their formulation, the TSP is a complex
solving problem and the complexity of its solution has been a continue challenge
to the mathematicians for centuries.

3.1 Problem Statement

The TSP for C cities is the problem of finding a tour visiting all the cities exactly
once and returning to the starting city such that the sum of the distances between
consecutive cities is minimized. The requirement of returning to the starting city
does not change the computational complexity of the problem.

3.2 TSP Algorithm Implementation

An Euclidean TSP1 algorithm implementation, called global pruning algo-
rithm, to obtain the exact TSP solution in a parallel machine is presented.
It is used to analyze the influence of indeterminism in performance prediction,
and also to show the usefulness of the methodology. It is a branch-and-bound
algorithm which recursively searches all possible paths and prunes large parts of
the search space by maintaining a global variable containing the length of the
shortest path found so far. It follows the Master-Worker (MW) programming
paradigm [5].

Each city is represented by two coordinates in the Euclidean plane then,
for each city pair exists a symmetrical distance. Considering C different cities,
the Master defines a certain level L to divide the tasks. Tasks are the possible
permutations of C − 1 cities in L elements. The granularity G of a task is the
number of cities that defines the task sub-tree: G = C − L. At the start-up
execution, the Master sends tasks with a variable containing the length of the
shortest path found so far.

A diagram of the possible permutations for 5 cities, considering the salesman
starts and ends his trip at the city 1, can be seen in Fig. 2. The Master can
divide this problem into 1 task of level 0 or 4 tasks of level 1 or 12 tasks of level
2 for example. The tasks of the first level would be represented by the cities 1
and 2 for the first task, 1 and 3 for the second, followed by 1 and 4 and 1 and 5.

1 For simplicity of implementation, it were considered cities in R2 instead of Rn. The
most straightforward way of computing distances between cities in a two-dimensional
space is to compute Euclidean distances. Anyway, the election of distance measure
(Euclidean, Manhattan, Chebychev, ...) is irrelevant. The ideas of this paper can be
generalized to more general settings.

102 P. Fritzsche, D. Rexachs, and E. Luque

Fig. 2. Possible paths for the salesman considering 5 cities

Fig. 3. (a) Matrix of distances (b) Pruning process in the TSP algorithm implemen-
tation

Workers are responsible for calculating the distance of the permutations left
in the task and sending to the Master the minimum path and distance of these
permutations. One of the characteristics of a pruning TSP implementation is
that if the length of a partial path is bigger than the current minimal length,
this path is not expanded further and a part of the search space is pruned.
Consequently, each estimate depends on several factors.

Fig. 3(a) shows a strictly lower triangular matrix of distances, meanwhile
Fig. 3(b) exhibits the pruning process for the TSP algorithm implementation
where each arrow has the distance between the two cities it connects. Analyzing
Fig. 3(b), the total distance for the first followed path (in the left) is of 40 units.
The distance between 1 and 2 on the second path (in the right) is already of
42 units. It is then not necessary for the algorithm to keep calculating distances
from the city 2 on because it is impossible to reach a better distance for this
branch.

A General Approach to Predict the Performance Order 103

4 Discovering the Significant Input Parameters

The execution time for the global pruning algorithm (GP-TSP) depends on the
number of cities (C), the number of processors (P), and other parameters. As
a result of the investigation, right now the sum of the distances from one city
to the other cities (SD) and the mean deviation of SDs values (MDSD) are
the numerical parameters characterizing the different input data beyond the
number of cities (C). But how these final parameters have been obtained? Next,
it is described the followed way to discover the above mentioned dependencies
(SD and MDSD).

Specification of the parallel machine: The execution were reached with a
32 node homogeneous PC Cluster (Pentium IV 3.0GHz., 1Gb DDR-DSRAM
400Mhz., Gigabit Ethernet) at the Computer Architecture and Operating Sys-
tems Department, University Autonoma of Barcelona. All the communications
have been accomplished using a switched network with a mean distance between
two communication end-points of two hops. The switches enable dynamic routes
in order to overlap communication.

4.1 First Hypothesis: Location of the Cities (Geographical Pattern)

For simplicity, only a training data set will be analyzed along this section. It
consists of 5 different geographical patterns of 15 cities each one (named G1 to
G5). Fig. 4 shows the five patterns handled for the 15 cities.

The GP-TSP algorithm receives the number of cities and their coordinates,
and the level. It proceeds recursively searching all possible paths using the prun-
ing strategy and, finally, generating the minimal path and the time spent.

Table 1 shows the obtained execution times (in sec.) by pattern and starting
city for the GP-TSP (columns G1 to G5) executed in 8 nodes of the parallel
machine.

Fig. 4. Five patterns for 15 cities

104 P. Fritzsche, D. Rexachs, and E. Luque

Table 1. Execution times (in sec.) and assigned cluster for the GP-TSP

Starting Pattern
city G1 CL1 G2 CL2 G3 CL3 G4 CL4 G5 CL5

1 216.17 1 36.50 3 15.34 2 10.51 4 8.03 5

2 214.44 1 36.82 3 15.19 2 9.98 4 8.14 5

3 77.25 1 18.16 2 10.31 4 9.95 4 8.02 5

4 72.64 1 18.03 2 10.34 4 10.41 4 7.83 5

5 70.94 1 18.54 2 10.24 4 10.30 4 7.91 5

6 74.21 1 17.83 2 15.24 2 9.88 4 7.98 5

7 75.59 1 38.09 3 15.57 2 9.88 4 8.22 5

8 73.72 1 37.29 3 15.02 2 10.02 4 7.71 5

9 69.47 1 17.79 2 10.27 4 10.49 4 7.82 5

10 74.96 1 17.48 2 10.23 4 9.85 4 8.04 5

11 75.89 1 17.07 2 15.84 2 9.87 4 8.12 5

12 70.17 1 17.39 2 10.28 4 9.97 4 7.78 5

13 73.73 1 18.10 2 10.36 4 10.24 4 7.71 5

14 70.87 1 17.37 2 10.17 4 10.36 4 7.93 5

15 73.30 1 18.00 2 10.32 4 10.26 4 7.87 5

Mean 92.23 22.97 12.32 10.14 7.94

To discover the internal information of these values, it was decided to apply
data mining techniques. In particular, the data mining technique called ’cluster-
ing’ was chosen to partition the data set into distinctive ’data clusters’, so that
the data in each cluster share some common trait (similar execution time). This
work was done using a k-means algorithm [7] included in a dynamic and open
environment of clustering called Cluster-Frame [5]. In order to find 5 clusters, k
was fixed in 5. The idea was to obtain quite similar groups with respect to the
groups (patterns) used at the beginning. The initial centroids were randomly
selected by the clustering application. The chosen objective function was the
squared error function, Eq. 1

k∑

j=1

n∑

i=1

|x(j)
i − cj |2 (1)

where |x(j)
i − cj |2 is a chosen distance measure between a data point x

(j)
i and

the cluster centroid cj , the entire function is an indicator of the distance of the
n data points from their respective cluster centroids.

Columns CL1,..,CL5 in Table 1 show the assigned cluster for each sample.
For the clusters 1 to 5, the centroids values were 92.22 sec., 16.94 sec., 37.17 sec.,
10.19 sec., and 7.94 sec., respectively.

The quality evaluation involves the validation of the above mentioned hy-
pothesis. For each sample, the assigned cluster was confronted with the defined
graphic pattern previously. The percentage of hits expresses the capacity of pre-
diction. A simple observation is that the run times were clustered in a similar
way to patterns fixed at starting, the capacity of prediction was of 75% for the

A General Approach to Predict the Performance Order 105

GP-TSP. This means that there was a close relationship between the patterns
and the run times.

Conclusions: The initial hypothesis for the GP-TSP was corroborated; the
capacity of prediction was greater than 75% for the full range of experiments
worked. This value gave evidence of the existence of other significant parame-
ters. Therefore, a deep analysis of results revealed an open issue remained for
discussion and resolution, the singular execution times by pattern. Another ma-
jor hypothesis was formulated. At this stage, the asymptotic time complexity
was defined as O(C, P, pattern).

4.2 Second Hypothesis: Location of the Cities and Starting City
(C1)

The analyzed training data set is the same used previously. Comparing Fig. 4
with Table 1, it is easy to infer some important facts. The two far cities in
Fig. 4(a) correspond with the two higher time values of Table 1(G1). The four
far cities in Fig. 4(b) correspond with the four higher execution time values of
Table 1(G2). The six far cities in Fig. 4(c) correspond with the six higher time
values of Table 1(G3). The cities in Fig. 4(d) are distributed among two zones
so, the times turn out to be enough similar, see Table 1(G4). Finally, the cities
in Fig. 4(e) are enough closed so, the times are quite similar, see Table 1(G5).

Another important observation is that the mean of execution times by group
decreases as the cities approach.

Conclusions: Without doubt, the location of the cities and the starting city (C1)
play an important role in run times; the hypothesis was corroborated. Anyway,
an open issue remained for discussion and resolution, how to relate a pattern
(in general) with the numerical value of the execution time. This relationship
would be able to establish a numerical characterization of patterns. On this
basis, an original hypothesis was formulated. At this point, the asymptotic time
complexity for the GP-TSP was redefined as O(C, P, pattern, C1).

4.3 Third Hypothesis: Sum of Distances and Mean Deviation of
Sum of Distances

What parameters could be used to quantitatively characterize different geograph-
ical patterns in the distribution of cities? Right now for each pattern, the sum
of the distances from one city to the other cities (SDj, as shown on Eq. 2) and
the mean deviation of SDs values (MDSD) are the worked inputs.

∀j : 1 ≤ j ≤ C SDj =
C∑

i=1

√

(xj − xi)2 + (yj − yi)2 (2)

If a particular city j is very remote of the others, its SDj will be considerably
greater to the rest and consequently the execution time G will grow also. This
can be observed in Table 2.

106 P. Fritzsche, D. Rexachs, and E. Luque

Table 2. Execution times (in sec.) and sum of the distances for the GP-TSP

Starting Pattern
city G1 SD1 G2 SD2 G3 SD3 G4 SD4 G5 SD5

1 216.17 853.94 36.50 746.10 15.34 664.60 10.51 643.75 8.03 148.74

2 214.44 887.44 36.82 740.49 15.19 649.14 9.98 574.23 8.14 123.19

3 77.25 315.51 18.16 369.56 10.31 467.99 9.95 574.97 8.02 124.96

4 72.64 230.11 18.03 383.38 10.34 490.55 10.41 611.45 7.83 111.79

5 70.94 226.88 18.54 345.83 10.24 477.42 10.30 599.99 7.91 103.35

6 74.21 244.56 17.83 330.76 15.24 638.04 9.88 530.72 7.98 109.78

7 75.59 276.09 38.09 820.63 15.57 707.70 9.88 578.78 8.22 172.52

8 73.72 294.62 37.29 789.80 15.02 678.07 10.02 555.70 7.71 141.15

9 69.47 233.53 17.79 370.10 10.27 491.52 10.49 635.54 7.82 104.16

10 74.96 234.84 17.48 323.12 10.23 446.48 9.85 544.61 8.04 124.64

11 75.89 259.19 17.07 332.87 15.84 643.65 9.87 534.91 8.12 131.68

12 70.17 234.22 17.39 325.19 10.28 449.03 9.97 534.36 7.78 96.29

13 73.73 306.99 18.10 383.11 10.36 504.79 10.24 595.58 7.71 102.81

14 70.87 239.19 17.37 327.02 10.17 451.21 10.36 592.68 7.93 111.28

15 73.30 295.27 18.00 372.00 10.32 494.09 10.26 639.61 7.87 147.14

MDSD 140.94 165.47 90.60 31.56 16.78

Why is it need to consider MDSD in addition to SD as a significant parameter?
Quite similar SD values from the same experiment (same column) of Table 2
imply similar execution times. The SD1 values for starting city 4 and 10 are
230.11 and 234.84, respectively. Their execution times (G1) are similar 72.64
and 74.96. Instead, this relation is not true considering similar SD values from
different experiments (different columns). The SD1 value for starting city 3 and
the SD2 value for starting city 10 are similar (315.51 and 323.12, respectively)
but the execution times are completely dissimilar. The different values of MDSD
for SD1 and SD2 explains the different execution times for similar SD values.

Conclusions: The asymptotic time complexity for the global pruning algorithm
should be defined as O(C, P, SD, MDSD).

Another important fact has been reached beyond what was originally sought.
By looking each combination of SDj and MDSD values coming from C cities,
it is also possible to choose the best starting city for the TSP problem. This
means invests less time in order to obtain the minimal path.

4.4 Building a Multiple-Linear-Regression Model

The GP-TSP algorithm has been executed for a great amount of training pat-
terns in order to take enough experimental data to validate this experimental
approach. Then, as the methodology is based on the black-box approach, these
experimental results have been used to create a multiple-linear-regression model.

There are four independent input variables (C, P, SD, MDSD) and the basis
form of the four-dimensional regression model for the execution time (T) is

A General Approach to Predict the Performance Order 107

T = b0 + b1C + b2P + b3SD + b4MDSD (3)

where b0, b1, b2, b3, and b4 are the regression parameters to estimate. There exist
m measurements of the output T for various combinations of the inputs C, P ,
SD, and MDSD. Each measurement can be expressed as

Ti = b0 + b1Ci + b2Pi + b3SDi + b4MDSDi + ei (4)

where ei is the residual for the data (Ci, Pi, SDi, MDSDi, Ti).
To find the regression parameters b0, b1, b2, b3, and b4, it is necessary to

minimize the sum of squares of these residuals, denoted SSE.

SSE =
m∑

i=1

e2
i =

m∑

i=1

(Ti − b0 − b1Ci − b2Pi − b3SDi − b4MDSDi)2 (5)

The Eq. 5 takes on its minimum value when the partial derivatives of SSE
with respect to b0, b1, b2, b3, and b4 are all set to zero. This procedure then
leads to a system of equations. The solution could be found by using any of
the standard methods for solving systems of equations or using any available
software package designed for this purpose [8].

4.5 Evaluating the Regression Equation

Finally, the regression equation is used to predict how the GP-TSP algorithm
will perform when given new input data sets. Replacing C, P , SD, and MDSM
with real values in Eq. 3, it is possible to estimate the time required to find the
minimal path for this master-worker global pruning TSP algorithm.

5 Conclusions

This paper introduces a novel methodology to estimate the execution time order
of a hard data-dependent parallel algorithm that solves the TSP problem. It
is important to understand that the parallel performance achieved depends on
several factors, including the application, the multiprocessor architecture, the
data distribution, and also the methods used for partitioning the application
and mapping its components onto the architecture.

The general methodology begins by collecting execution-time data for a con-
siderable number of TSP instances. A well-designed experiment guides the ex-
perimenters in choosing what experiments actually need to be performed. This
is a complex task and the experiments should provide a representative sample.
Then, a data-mining process explores these collected data in search of patterns
and/or relationships detecting the main parameters that affect performance.
These patterns and/or relationships are modelled numerically in order to gen-
erate an analytical formulation of the execution time. As the methodology is
based on a black-box approach, the measured values for this representative sam-
ple of inputs are used to produce a multiple-linear-regression model. Finally, the

108 P. Fritzsche, D. Rexachs, and E. Luque

regression equation allows for predicting how the algorithm will perform when
given new input data sets.

A GP-TSP algorithm has been studied. It is used to analyze the influence of
indeterminism in performance prediction and also to show the usefulness and the
profits of the methodology. The execution time for the global pruning algorithm
depends on the number of cities (C), the number of processors (P), and other
parameters. As a result of the investigation, right now the sum of the distances
from one city to the other cities (SD) and the mean deviation of SDs values
(MDSD) are the numerical parameters characterizing the different input data
beyond the number of cities (C). The followed way to discover these final param-
eters has been exhaustively described. Finally, their asymptotic time complexity
has been defined O(C, P, SD, MDSD).

Building a multiple-linear-regression model with the four independent input
variables (C, P, SD, MDSD) and, then, using the regression equation, a predic-
tion of performance order for a new data set it is possible to give.

Another important fact has been reached beyond what was originally sought.
It is possible to take advantage of the relationship between SDj and MDSD
values coming from C cities to invests less time obtaining the minimal path.

References

[1] Skiena, S.: The algorithm design manual. Springer, New York (1998)
[2] Martello, S., Toth, P.: Knapsack problems: algorithms and computer implementa-

tions. John Wiley & Sons, Inc., New York (1990)
[3] Geraerts, R., Overmars, M.H.: Reachability analysis of sampling based planners. In:

IEEE International Conference on Robotics and Automation, pp. 406–412 (2005)
[4] TSP page (2008), http://www.tsp.gatech.edu/history/
[5] Fritzsche, P.: Podemos predecir en algoritmos paralelos no-deterministas? PhD

Thesis, University Autonoma of Barcelona, Computer Architecture and Operating
Systems Department, Spain (2007), http://caos.uab.es/

[6] Fritzsche, P.C., Rexachs, D., Luque, E.: Extracting knowledge to predict tsp asymp-
totic time complexity. In: ICDMW 2007: Proceedings of the Seventh IEEE Interna-
tional Conference on Data Mining Workshops, Washington, DC, USA, pp. 309–318.
IEEE Computer Society, Los Alamitos (2007)

[7] MacQueen, J.B.: Some methods for classification and analysis of multivariate ob-
servations. In: Le Cam, L.M., Neyman, J. (eds.) Proc. of the fifth Berkeley Sym-
posium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University
of California Press (1967)

[8] Lilja, D.: Measuring computer performance: a practitioner’s guide. Cambridge Uni-
versity Press, New York (2000)

http://www.tsp.gatech.edu/history/
http://caos.uab.es/

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 109–120, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Examining the Feasibility of Reconfigurable Models for
Molecular Dynamics Simulation

Eunjung Cho1,*, Anu G. Bourgeois1, and José Alberto Fernández-Zepeda2

1 Computer Science Department of Georgia State University
echo@student.gsu.edu, anu@cs.gsu.edu

2 Dept. of Computer Science, CICESE, MEXICO
fernan@cicese.mx

Abstract. A Molecular Dynamics (MD) system is defined by the position and
momentum of particles and their interactions. The dynamics of a system can be
evaluated by an N-body problem and the simulation is continued until the en-
ergy reaches equilibrium. Many applications use MD for biomolecular simula-
tions and the simulations are performed in multiscale of time and length. The
simulations of the relevant scales require strong and fast computing power, but
it is even beyond the reach of current fastest supercomputers. In this paper, we
design R-Mesh Algorithms that require O(N) time complexity for the Direct
method for MD simulations and O(r)+O(logM) time complexity for the Multi-
grid method, where r is N/M and M is the size of R-Mesh. Our work supports
the theory that reconfigurable models are a good direction for biological stud-
ies which require high computing power.

1 Introduction

Extensive research has been focused on the field of Molecular Dynamics (MD) over
the past 20 years [1-3]. In the field of biology, MD simulations is continuously used
to investigate biological studies including protein folding, enzyme catalysis, confor-
mational changes associated with biomolecular function and molecular recognition of
proteins, DNA, and biological membrane complexes. Many applications use MD for
biomolecular simulations and the simulations are performed in multiscale of time and
length. The simulations of the relevant scales require strong and fast computing
power, but it is even beyond the reach of current fastest supercomputers. [1, 4].

Many approaches have been proposed to improve the performance of MD simula-
tion in terms of the time. These approaches are divided into two categories by focus-
ing on either the software or on the hardware. The software approach involves
developing efficient algorithms to calculate the forces. Currently, many algorithms
have been introduced and large scale parallel computers are used to achieve reason-
able computational time. Among the algorithms, Ewald’s method [5] runs in O(N3/2)
time and Particle Mesh Ewald (PME) [2, 6] method applies discrete fast Fourier

* Research sponsored by Molecular Basis of Disease (MBD) fellowship since 2006.

110 E. Cho, A.G. Bourgeois, and J.A. Fernández-Zepeda

transforms (FFT) to compute long-range interactions and reduce O(N3/2) to O(NlogN)
on a general purpose processor. Multi-Grid (MG) [3] method requires O(N) time
complexity for a given accuracy on a general purpose processor where N is the
number of atoms in a molecular system to be performed.

The hardware approach has focused on running MD simulations on special pur-
pose processors or developing Application-Specific Integrated Circuits (ASIC) to
achieve much faster calculation time. Since MD simulations are performed for large
number of atoms in a molecular system, many studies exploits supercomputing sys-
tems or parallel systems to achieve better performance. Alam et al. [1, 4] observe the
performance of supercomputing systems for running MD simulation packages
(AMBER, NAMD, LAMMPS). NAMD and LAMMPS have been reported to scale
to up to a few thousand nodes, while AMBER’s PME method does not scale beyond
128 processors [1, 7] due to the communication overheads. They expect that peta-
FLOPS-scale computing power in the near future will meet the speed for biological
studies [4], but not of the current time. Special purpose processors [8] and applica-
tion-specific Integrated Circuits (ASIC) for MD simulation [9] require highly cost,
complicated processes, and long development spans.

Another research direction to achieve better performance is to adopt reconfigur-
able models to run large scale problems. Reconfigurable models provide the ability to
customize circuits to specific problem inputs at run time and the ability to reuse the
same logic resources in different configurations from one phase of a computation to
the next [10]. These features enable efficient solutions to many problems, including
image and video processing, cryptography, object tracking, digital signal processing,
and networking. Previous work developed a Field programmable Gate Array(FPGA)-
based MD simulator. They achieved faster simulation than the simulation on a gen-
eral purpose processor [11-13] and FPGA board is much cheaper compared to ASIC
and special purpose processor or supercomputing system.

In this paper, we are proposing a project that exploits another reconfigurable
model to run MD simulations in a flexible and efficient manner. The Reconfigurable
Mesh (R-Mesh) is a simple model to describe and understand since it uses a mesh
topology to interconnect processors. Many published results use the R-Mesh (or
variations) as the model of computation [14]. We design fast and efficient R-Mesh
algorithms for MD simulations and thus bring a new concept to the field of biology.
This work demonstrates that the large scale biological studies can be simulated in
close to real time.

The R-Mesh algorithms we design highlight the feasibility of R-Mesh to evaluate
potentials with faster calculation times. Specifically, we develop R-Mesh algorithms
for both the Direct method and Multigrid method. The Direct method evaluates exact
potentials and forces by Equation 1 but takes takes O(N2) calculation time for evalu-
ating electrostatic forces on a general purpose processor. Multigrid (MG) method
adopts an interpolation technique to reduce calculation time to O(N) for a given accu-
racy. Although the MG method achieves C·N calculation time, the constant C is a
large number. However, our R-Mesh algorithms provide O(N) time complexity for

 Examining the Feasibility of Reconfigurable Models 111

the Direct method and O(r)+O(logM) time complexity for the Multigrid method,
where r is N/M and M is the size of the R-Mesh.

The contribution of this paper is presenting another approach to solve the inten-
sively time consuming and large scale problem of molecular dynamics simulations.
Although the R-Mesh is a theoretical model, our work supports the theory that
reconfigurable models are a good direction for biological studies which require high
computing power.

This remainder of the paper contains the following materials. In Section 2, we
provide background material for MD simulations and Multigrid algorithm. In Section
3, we describe the R-Mesh and present our proposed R-Mesh algorithms for MD
simulation. Section 4 analyzes our algorithms and summarizes our idea. Finally,
Section 5 provides concluding remarks

2 Background of Molecular Dynamics Simulation

This section briefly describes the basics of Molecular Dynamics (MD) simulation
and algorithms for MD simulation. Since we are focusing on the Multigrid method,
we provide some more detail for this algorithm.

2.1 Molecular Dynamics Simulation

In Molecular Dynamics simulation, dynamics are calculated by Newtonian mechan-
ics [6]. MD simulation integrates acceleration to obtain position and velocity changes
of atoms in the system. This process is typically continued every 1 femtosecond until
the system stabilizes.

There are other approaches to describe forces of an MD system. Newton’s equa-
tion of motion describes nature conserving the energy, but other approaches modify
the forces to achieve equilibrium states satisfying certain specified requirements,
such as constant temperature, constant pressure or rigid molecules.

Fi represents ith atom’s force and can be described by the potential energy.

F U x x x Fi i N i
extended= −∇ +(, ,...,)1 2 ,

where U is the potential, N is the number of atoms in the system and extended
iF is an

extended force like velocity-based friction. The potential U consists of bonded and
non-bonded potentials. It takes O(N) time to calculate the bonded potentials and
O(N2) for non-bonded potentials. So many researchers focus on the non-bonded in-
teractions due to the intensive computational time. Non-bonded interactions can be
divided as electrostatic potential and Lennard-Jones potential. Electrostatic potential

represents Coulomb potential and Lennard-Jones potential represents a van der
Waals attraction and a hard-core repulsion. The Lennard-Jones potential can be cal-
culated in O(N) time, since the Lennard-Jones function decays very fast [2]. Electro-
static potential takes O(N2) time by Equation 1 and many studies try to reduce the
time complexity. We also are focusing on long-ranged interactions, especially
electrostatic forces due to the intensive computational time.

112 E. Cho, A.G. Bourgeois, and J.A. Fernández-Zepeda

U
q q

x
ij

electrostatic i j

ij

= 1

4 0
2πε

(1)

where Uij
electrostatic is electrostatic potential between atom i and atom j and π and ε0 are

constant numbers and qi and qj are the charges of atoms i and j.

2.2 Multigrid Method for Molecular Dynamics Simulation

The Multigrid (MG) method was introduced in the 1960’s to solve partial differential
equations (PDE). Recently it has been applied and implemented for N-body problems
and achieves O(N) time complexity for a given accuracy. The basic idea of MG is to
hierarchically separate the force potential into a short range part plus a smooth part
(slowly varying part of energy). MG method uses gridded interpolation for both the
charges (source) and the potentials (destination) to represent its smooth (coarse) part
[3]. The splitting and coarsening are applied recursively and define a grid hierarchy
(Refer to Figure 1). MG method is faster for a given error rate at given accuracy than
other methods such as Ewald’s method [5] and Multipole method [15].

Fig. 1. The multilevel scheme of Multigrid method [3]. (1) Aggregate to coarser grids (2)
Compute potential induced by the coarsest grid(3) Interpolate potential values from coarser
grids (4) Local corrections.

Although there are many methods for evaluating potentials and forces, we propose R-
Mesh algorithms implementing MG method and the Direct method. The Direct method
is a basic and exact method for electrostatic potentials. The reason we choose the MG
method is that it provides faster calculation time than other methods and we can easily
map the gridded interpolation of MG method to the mesh topology of an R-Mesh. By
doing this, we are able to achieve O(r)+O(logM) time complexity on the R-Mesh.

3 Reconfigurable Mesh and Proposed Algorithm

In this section, we provide the basic concepts of the Reconfigurable Mesh (R-Mesh)
and present our R-Mesh algorithms for both the Direct method and Multigrid (MG)
method of MD simulations.

 Examining the Feasibility of Reconfigurable Models 113

3.1 Reconfigurable Mesh

An R × C Reconfigurable Mesh (R-Mesh) is a two-dimensional array of processors
connected in an R × C grid. Each processor in the R-Mesh has direct “external con-
nections” to adjacent processors through a set of four input/output ports. A processor

Fig. 2. Internal connections of an R-Mesh

can internally partition its set of ports so that ports in the same block of a partition are
fused. These partitions, along with external connections between processors, define a
global bus structure that connects the ports of processors. All ports that are part of the
same bus are said to be in the same component of the R-Mesh. Any data written from
one of these ports can be read by all connected ports in a single step. Figure 2 shows
a 3 × 5 R-Mesh depicting the fifteen possible port partitions of a processor. The R-
Mesh is a synchronous model that may change its bus configurations at each step. It
also assumes negligible delay on buses. In this paper, we assume the concurrent read
and exclusive write (CREW) model.

3.2 Proposed R-Mesh Algorithms

MD simulation repeatively evaluates forces until the energy reaches equilibrium. If
the function for evaluating forces requires O(N2) time complexity such as the Direct
method, the entire time complexity is K· O(N2), where K is the number of iterations
and is usually a large number. Therefore it is very important to reduce the time for
evaluating forces. In this section, we develop several algorithms for the R-Mesh that
require much less calculation time.

3.2.1 Algorithms for Direct Method
The Direct method uses Equation 1 to evaluate electrostatic potential and takes O(N2)
time on a general purpose processor where N is the number of atoms in a molecular
system. We develop R-Mesh algorithms for the Direct method. Algorithm 1 is the
main module of the MD simulation. Algorithm 1 requires K·O(N) time complexity on
an N processor reconfigurable linear mesh. In Algorithm 1, p(i) and q(i) are local
data for the position and charge of atoms. DirectComputeForce() evaluates forces of
each atom and is described in Algorithm 1-1. doOneAtomPair(i, j) in Algorithm 1-1
evaluates the potential energy between atom i and atom j. UpdateVelocity() and Up-
datePosition() updates the velocity and position of atoms and takes O(1) time.

114 E. Cho, A.G. Bourgeois, and J.A. Fernández-Zepeda

Algorithm 1. (MD simulation with Direct method)
1. Model : N processors (N is # of atoms) 1-dimensional R-Mesh
2. Input: proc(i) store p(i)={p0, p1, …, pN-1} and q(i)={q0, q1, …, qN-1}
3. Output : proc(i) store force(i)={force0, force1, … forceN-1} and updated p={p0, p1, …, pN-1} and proc(0)
store total energy in E

begin // K×O(N) (K is the number of iteration)
MDSimulation_Direct ()

while E is not changed do
DirectComputeFoce(p, q) // O(N)
UpdateVelocity(pos, force, E)
UpdatePostion(pos, force, E)
proc(i) broadcast updated position of atom i and force to all process // O(N)

 end_while
end

Algorithm 1-1. (DirectComputeForce)
1. Model : N processors (N is # of atoms) 1-dimensional R-Mesh
2. Input: proc(i) store p(i)={p0, p1, …, pN-1} and q(i)={ q0, q1, …, qN-1}
3. Output : proc(i) store force(i)={f0, f1, …, fN-1} and Proc(0) store total energy in E

begin // O(N)
DirectComputeForce()

 each proc(i)
 for j 1 to N-1 do
 force(i) = force(i) + doOneAtomPair(i, j) // O(1)
 end_for
 e(i) = e(i) + Calculate_Energy(force(i)) // O(1), calculate energy for atom i

 compute E = e(0)+e(1) + … +e(N-1) with N R-mesh and proc(0) store E // O(logN)

end

3.2.2 Algorithms for Multigrid Method
The Multigrid (MG) method takes O(N) time on a general purpose processor, where
N is the number of atoms in a molecular system. We developed an R-Mesh algo-
rithm for the MG method that requires O(r)+O(logM) time complexity on an X×Y×Z
3-dimensional R-Mesh, where r is N/M and M= X×Y×Z is the number of finest grid
points applied to MG method for a given parameter. The value of M is usually much
smaller compared to N unless the molecular system to be simulated is very small. For
example, MG method determines finest grid points to (13, 13, 13) for the molecular
system with N =309 atoms to achieve 0.0008 relative accuracy [11]. In this case M is
13*13*13 = 2,197. A large molecular system that has N=14,281 atoms determines
finest grid points (21, 21, 21) to achieve 0.0005 relative accuracy. In this case M is
21*21*21=9281, which is smaller compared to number of atoms (14281).

Algorithm 2 is the main module of the MD simulation and requires
K·(O(r)+O(logM)) time complexity. The main module is similar to Algorithm 1, but
with a preprocessing function (Algorithm 2.1) that distributes atoms to the nearest 64
processors. Those 64 processors correspond to the closest grid points to atoms. This
function runs based on the flag (CheckChangedGrid) that is assigned by CheckGrid-
Point(). This function checks the new position and its grid point. Usually the atoms

 Examining the Feasibility of Reconfigurable Models 115

retain their previous grid points assigned, so the calculation time of preprocessing()
is negligible over the entire simulation

Algorithm 2. (MD simulation with Multigrid method)
1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of finest grid point)
2. Input: proc(i, j, k) hold store p(i,j,k)={ pstart, .. , pstart+c-1} and q(i,j,k)={ qstart, .., qstart+c-1},
 which start = i*c +j*X*c+k*X*Y*c and c = N/M
3. Output : proc(i, j, k) store force(i,j,k)={f0, f1.. fr}, p(i,j,k)={p0, p1.. ,pr} and proc(0,0,0) hold E,
 r is number of atoms assigned in proc(i, j, k)

begin // K×(O(r)+O(logM)) (K is the number of iteration)
MDSimulation_Multigrid ()

while energy is not changed do
 if(CheckChangedGrid == true)

 Preprocessing() // O(N)
 End_if

 MultigridComputeForce(p(i,j,k), q(i,j,k))
proc(i, j, k) run UpdateVelocity(p(i,j,k), force(i,j,k), E)
proc(i, j, k) run UpdatePostion(p(i,j,k), force(i,j,k), E)
proc(i, j, k) set CheckChangedGrid CheckGridpoint(p(i,j,k))

 end_while
end

Algorithm 2-1 describes preprocessing() that distributes information of atoms to
nearby processors. proc(i, j, k) represents grid point (i, j, k) at level 0. calGridpoint
(start+m, pstart+m) returns grid_pos and atom start+m assigned to grid_pos to interpo-
late. calThetas(grid_pos(i,j,k), pstart+m) calculates thetas and we use 4th hermite inter-
polation function to calculate thetas. Anterpolate() module (Algorithm 2-2-1) uses
this information to calculate Q0 (charge of finest grid). This algorithm takes O(N)
time due to the N broadcasting steps required.

Algorithm 2-1. (Preprocessing)
1. Model : M processors
2. Input: proc(i, j, k) hold store p(i,j,k)={ pstart, .. , pstart+c-1} and q(i,j,k)={ qstart, .., qstart+c-1},
 which start = i*c +j*X*c+k*X*Y*c and c = N/M
3. Output : proc(i, j, k) store D(i,j,k) = {d0, d1.. dr}, which dm = (index, p, q thetas, grid_pos),
 r is number of atoms assigned in proc(i, j, k)

begin
Preprocessing ()

If D(i,j,k)’s grid_pos is changed // O(N)
 for m 0 to c-1 do // c = N/M
 grid_pos calGridpoint (start+m, pstart+m)
 thetas calThetas(grid_pos(i,j,k), pstart+m)
 D(i,j,k).dm = (start+m, pstart+m,, qstart+m thetas, grid_pos)
 end_for

send D(i,j,k).dm to proc(D(i,j,k).dm.grid_pos) //N broadcasting times
 else keep previous D(i,j,k) //O(1)
 end_if

end

MultigridComputeForce() described in Algorithm 2-2 evaluates the forces of each
atom. Each processor represents the grid points for the finest grid. It consists of 6

116 E. Cho, A.G. Bourgeois, and J.A. Fernández-Zepeda

steps. Step 1 is Anterpolate() to interpolate weights for the position of atoms and
anterpolate the charge q onto the finest grid (level 0). Step 2 is coarsening that anter-
polates the grid charge from the current level to level+1. correction(i) requires O(

Nx(i)· Ny(i)· Nz(i)), where Nx(i), Ny(i), Nz(i) = grid points at ith level and Level =
level of the MD simulation. Step 3 is computing the potential for the top level. Step 4
is interpolating the grid charge from level to level-1. Step 5 is computing the energy
of the top grid level. Step 6 is interpolating the force from grid level 0.

Algorithm 2-2. (Multigrid method for MD simulation with n atoms)
1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of finest grid point)
2. Input: proc(i, j, k) hold D(i,j,k) = {d0, d1.. dr}, which dm = (index, p, q thetas, grid_pos), r is number of
atoms assigned in proc(i, j, k)
3. Output : proc(i, j, k) store force(i,j,k)={f0, f1.. fr}, p(i,j,k)={p0, p1.. ,pr} and proc(0,0,0) hold E, r is num-
ber of atoms assigned in proc(i, j, k),

begin
MultigridComputeForce(p, q)

Step 1) Anterpolate() // O(1)
Step 2) for i 0 to Levels-1
 fineToCoarse (i) // O(1)
 correction (i) // O(Nx(i)· Ny(i)· Nz(i))
 end_for
Step 3) direct () // O(Nx(Level)· Ny(Level)· Nz(Level))

 Step 4) for i 0 to Level-1
 coarseToFine (i) // O(1)

end_for
Step 5) energy() // O(logM)
Step 6) interpolateForce () // O(r)

end

Algorithm 2-2-1 describes Anterpolate() that anterpolates and interpolates weights
for the position of atoms and anterpolates the charge onto grid level 0. This algorithm
requires O(1) time complexity. Since each atom is interpolated to the nearest grid
that are order×order×order grid points, broadcasting is performed on an or-
der×order×order R-Mesh. The algorithm is designed so that there is no overlapping
and processors can broadcast data simultaneously. The actual number of broadcasting
steps is (order-1)4, where order is the order of interpolation function. After broad-
casting data, each processor updates Q0(i, j, k), which is the grid charges at level 0.
Figure 3 shows the broadcasting step with a 2-dimensional R-Mesh.

Algorithm 2-2-1. (Anterpolate)
1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of finest grid point)
2. Input: proc(i, j, k) hold Q0(i, j, k)=0 and hold D(i,j,k) = {d0, d1.. dr}, which dm=(index, p, q thetas,
grid_pos), r is number of atoms assigned in proc(i, j, k)
3. Output : proc(i, j,k) update Q0(i, j, k)

begin
Anterpolate () // O(1)

 Step1) proc(i, j, k) broadcast D(i, j, k,) to the nearest processors
 For rem 0 to order-1 do
 For ix 0 to order-1 do
 For jx 0 to order-1

 Examining the Feasibility of Reconfigurable Models 117

 For kx 0 to order-1 do
 If (i+ix)%order==rem && (j+jx)%order==rem && (k+kx)%order==rem

 proc(i,j,k) broadcast D(i,j,k) to proc(i, j, k)
 ~proc(i+order, j+order, k+order) //O(1)
 end_if
 end_for
 end_for
 end_for

 Step2) temp(i,j,k) Cal_GridCharge(D(i,j,k))

 //D(i,j,k).d.q* D(i,j,k).d.theta.X* D(i,j,k).d.theta.Y* D(i,j,k).d.theta.Z
 Step3) Q0(i, j, k) Q0(i, j, k) + temp(i,j,k)

end

Figure 3 shows that processor(i, j) broadcasts data to the nearest 15 processors.
Figure 3 (a) shows the first broadcasting step of processor(i, j) where i%4 ==0 and
j%4 == 0. Then in the second step, the next group of nodes broadcast their data as
shown in Figure 3 (b). These nodes have indices so that i%4 ==0 and (j-1)%4 == 0.
This continues for a total of (order-1)4 steps.

(a) (b)

Fig. 3. Example of broadcasting in Algorithm 2-2-1 with order = 4, Proc(0, 0), Proc(0, 4),
proc(4, 0) and proc(4,4) broadcast data simultaneously, Proc(0, 1), proc(0, 5), proc(5, 1) and
proc(5,5) broadcast data simultaneously

Algorithm 2-2-2 is the coarsening process. It coarsens grid charges from level to
level+1 and requires O(1) time complexity. The actual number of broadcasting steps
is (order-1)3. Coarsening() in Algorithm 2-2-2 expands broadcasting to 64 proces-
sors similar to Algorithm 2-2-1. Due to the lack of space we omit the algorithm de-
tail.

Algorithm 2-2-2. (FinetoCoarse(L))
1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of grid point at level L)
2. Input: proc(i, j, k) hold D(i,j,k) =(QL(i, j, k), theta) and L
3. Output : proc(i, j, k) update QL+1(i, j, k)

begin
FinetoCoarse (L) // O(1)
 Step1) proc(i, j, k) broadcast D(i, j, k,) to the nearest processors
 For ix 0 to order-1 do
 For jx 0 to order-1

118 E. Cho, A.G. Bourgeois, and J.A. Fernández-Zepeda

 For kx 0 to order-1 do
 If (i+ix)%order==0 && (j+jx)%order==0 && (k+kx)%order==0

 Coarsening(i,j,k) //O(1)
 end_if
 end_for
 end_for
 end_for

 Step2) temp(i,j,k) Cal_GridCharge(D(i,j,k)) // QL(i, j, k)*theta.X*theta.Y*theta.Z

 Step3) QL+1(i, j, k) Q L+1 (i,j,k) + temp(i,j,k)
 end_for
end

Algorithm 2-2-3 interpolates grid charges from level to level-1. This algorithm up-
dates Vlevel-1 which is the potential at level-1 and requires O(1) time complexity. Ra-
tio and order are constant numbers and Ratio represents the ratio between Level L
and L-1.

Algorithm 2-2-3. (CoarseToFine(L))
1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of grid point at L)
2. Input: proc(i, j, k) hold Vlevel(i, j, k) and theta ={X, Y, Z}
3. Output : proc(i, j, k) update Vlevel-1(i, j, k)

begin
CoarseToFine(L) // O(1)
 Each proc(i, j, k)
 Step 1) calculate temp using coarsened Vlevel and thetas

 i1 i/Ratio, j1 j/Ratio, k1 k/Ratio
 for i0 0 to order-1 do
 i2 i1+i0
 for j0 0 to order-1 do
 j2 j1+j0
 for k0 0 to order-1 do
 k2 k1+k0
 temp=temp+Vlevel(i2,j2,k2)*theta.X[i0]*theta.Y[j0]* theta.Z[k0]
 end_for
 end_for
 end_for
 Step2) Vlevel-1(i, j, k) = Vlevel-1(i, j, k) + temp
end

4 Results and Analysis

As explained above, Cray XT3 and Blue Gene/L provides scale to up to a few thou-
sands nodes due to the communication overheads [1, 4]. With this limitation, it is not
possible to provide accommodating computing speed for biology activity with cur-
rent computing power. The communication overhead limits the performance and
scaling on microprocessors and massively-parallel systems [16]. FPGA-based
simulators [11-13] lead that feasibility of exploiting Reconfigurable models on a
large scale problems such as the MD simulation. We support the feasibility of

 Examining the Feasibility of Reconfigurable Models 119

reconfigurable models by providing theoretical theorems with R-Mesh algorithm for
the MD simulation.

Our results for the Direct method require O(N) time complexity an N R-Mesh. We
are able to improve upon the results for the MG method. While we also are able to
achieve O(r)+O(logM) time complexity, the number of processors required are much
less. The R-Mesh algorithm requires M=X×Y×Z processors corresponding to the
number of finest grid points rather than N processors corresponding to the number of
atoms in the system. For most systems M is much smaller than N, thus reducing the
size of the simulating machine. This improvement is due to the natural mapping of
the layout of the MD system in a grid pattern to the three-dimensional structure of the
R-Mesh.

Theorem 1. Molecular Dynamics simulation of a molecular system with N atoms can
be performed in K·O(N) time on an N processor reconfigurable linear R-Mesh, when
the simulation exploits the Direct method to evaluate electrostatic potential. K is the
number of iterations to reach equilibrium. (Algorithm 1)

Theorem 2. Molecular Dynamics simulation of a molecular system with N atoms can
be performed in K·(O(r)+O(logM)) time on an X×Y×Z 3-dimensional R-Mesh, when
the simulation exploits the multigrid method to evaluate electrostatic potential. r is
N/M. M= X×Y×Z is the number of finest grid points applied to Multigrid method at
a given parameter. K is the number of iterations to reach equilibrium. (Algorithm 2)

5 Conclusion

In biology field, MD simulations are used continuously for biological activities.
Since MD simulation is a large scale problem and multiscale in length and time, there
have been many approaches with solutions to meet the speed required. We support
the idea that utilize Reconfigurable models to perform large scale problems such as
MD simulations. We design R-Mesh Algorithms and previously have been worked
on developing an FPGA-based simulator.

In this paper, we develop R-Mesh algorithms for two Molecular Dynamics simula-
tion methods, Direct method and Multigrid method. The Direct method requires
O(N2) time for evaluating electrostatic forces and provides accurate results if exe-
cuted sequentially. We develop an R-Mesh algorithm that implements Direct method.
It requires O(N) time complexity with an N processor R-Mesh (Theorem 1). We also
develop an R-Mesh algorithm that implements the Multigrid method to evaluate elec-
trostatic forces. The Multigrid method takes O(N) calculation time at a given accu-
racy for a sequential implementation. But our R-Mesh algorithm requires
O(r)+O(logM) time complexity with an X×Y×Z R-Mesh (Theorem 2). This algo-
rithm requires M processors, where M is the number of finest grid points
(M=X×Y×Z). Since M is usually a much smaller number compared to N, this algo-
rithm provides very fast simulation time with a small number of processors. There-
fore our R-Mesh algorithm is a feasible choice for developing the Multigrid method
for MD simulations and likely other large scale biological problems.

120 E. Cho, A.G. Bourgeois, and J.A. Fernández-Zepeda

References

1. Alam, S.R., Vetter, J.S., Agarwal, P.K.: Performance characterization of molecular dy-
namics techniques for biomolecular simulations. In: Proceedings of the eleventh ACM
SIGPLAN symposium on Principles and practice of parallel programming, pp. 59–68
(2006)

2. Rapaport, D.C.: The Art of Molecular Dynamics Simulation. Cambridge University Press,
Cambridge (2004)

3. Sagui, C., Darden, T.: Multigrid methods for classical molecular dynamics simulations of
biomolecules. The Journal of Chemical Physics 114, 6578 (2001)

4. Alam, S.R., Agarwal, P.K.: On the Path to Enable Multi-scale Biomolecular Simulations
on PetaFLOPS Supercomputer with Multi-core Processors. In: Sixth IEEE International
Workshop on High Performance Computational Biology (HiCOMB) (2007)

5. Toukmaji, A.Y., Board, J.A.: Ewald summation techniques in perspective: a survey.
Computer Physics Communications 95(2-3), 73–92 (1996)

6. Skeel, R.D., Tezcan, I., Hardy, D.J.: Multiple grid methods for classical molecular dy-
namics. Journal of Computational Chemistry, 2002 23(6), 673–684 (2002)

7. Agarwal, P.K., Alam, S.R.: Biomolecular simulations on petascale: promises and chal-
lenges. Journal of Physics: Conference Series 46(1), 327–333 (2006)

8. Komeiji, Y., et al.: Fast and accurate molecular dynamics simulation of a protein using a
special-purpose computer. Journal of Computational Chemistry, 1997 18(12), 1546–1563
(1997)

9. Toyoda, S., et al.: Development of MD Engine: High-speed accelerator with parallel
processor design for molecular dynamics simulations. Journal of Computational Chemis-
try 20(2), 185–199 (1999)

10. Vaidyanathan, R., Trahan, J.L.: Dynamic Reconfiguration: Architectures and Algorithms.
Plenum Pub Corp. (2003)

11. Cho, E., Bourgeois, A.G., Tan, F.: An FPGA Design to Achieve Fast and Accurate Re-
sults for Molecular Dynamics Simulations. In: Stojmenovic, I., Thulasiram, R.K., Yang,
L.T., Jia, W., Guo, M., de Mello, R.F. (eds.) ISPA 2007. LNCS, vol. 4742, p. 256.
Springer, Heidelberg (2007)

12. Azizi, N., et al.: Reconfigurable molecular dynamics simulator. In: Annual IEEE Sympo-
sium on Field-Programmable Custom Computing Machines, FCCM 2004, pp. 197–206
(2004)

13. Gu, Y., VanCourt, T., Herbordt, M.C.: Accelerating molecular dynamics simulations with
configurable circuits. Computers and Digital Techniques, IEE Proceedings 153(3), 189–
195 (2006)

14. Nakano, K.: A Bibliography of Published Papers on Dynamically Reconfigurable Archi-
tectures. Parallel Processing Letters 5(1), 111–124 (1995)

15. Rankin, W.T., Board Jr., J.A.: A portable distributed implementation of the parallel mul-
tipoletree algorithm. In: Proceedings of the Fourth IEEE International Symposium on
High Performance Distributed Computing, 1995, pp. 17–22 (1995)

16. Crowley, M., et al.: Adventures in Improving the Scaling and Accuracy of a Parallel Mo-
lecular Dynamics Program. The Journal of Supercomputing 11(3), 255–278 (1997)

Parallel Simulated Annealing for Materialized

View Selection in Data Warehousing
Environments

Roozbeh Derakhshan1, Bela Stantic2, Othmar Korn2, and Frank Dehne3

1 ETH Zurich, Switzerland
2 Institute for Integrated and Intelligent Systems

3
Griffith University, Brisbane, Australia

School of Computer Science, Carleton University, Canada

Abstract. In order to facilitate efficient query processing, the informa-
tion contained in data warehouses is typically stored as a set of material-
ized views. Deciding which views to materialize represent a challenge in
order to minimize view maintenance and query processing costs. Some
existing approaches are applicable only for small problems, which are
far from reality. In this paper we introduce a new approach for mate-
rialized view selection using Parallel Simulated Annealing (PSA) that
selects views from an input Multiple View Processing Plan (MVPP).
With PSA, we are able to perform view selection on MVPPs having
hundreds of queries and thousands of views. Also, in our experimental
study we show that our method provides a significant improvement in
the quality of the obtained set of materialized views over existing heuris-
tic and sequential simulated annealing algorithms.

Keywords: Parallel Simulated Annealing, Data Warehousing, Materi-
alized view selection.

1 Introduction

Data warehouses integrate data from multiple heterogeneous databases and other
information sources. A data warehouse(DW) is a repository of historical in-
formation available for querying and analysis. To avoid accessing the original
data sources and increase the efficiency of the warehousing queries, information
within a data warehouse is organized as a set of views from different production
databases. These views are often referred to as materialized views. The large
computation and space required for view materialization implies that it is im-
practical to materialize all possible views. Hence, there is a need for selecting an
appropriate set of views to materialize which increases the query performance,
commonly referred to as the view selection problem [9].

Because materialized views have to be in synchronization with source data,
any change to the source should be reflected to the views as well. Therefore, in
the data warehousing view maintenance cost also has to be considered not just
the query processing cost. The trade-off between query performance and view

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 121–132, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

122 R. Derakhshan et al.

maintenance cost makes materialized view selection one of the most challeng-
ing problems in data warehousing [13]. Based on a set of frequently asked DW
queries, the task is to select a set of views to materialize so that the total query
processing and view maintenance cost is minimized.

The materialized view selection problem is NP-hard[9]. Several heuristic al-
gorithms have been proposed in the literature to address the view selection
problem. We classified them into four major groups according to [1]:

Deterministic algorithms: The classic solution for this problem uses heuristics
which usually construct or search a solution in a deterministic manner and apply
some kind of heuristics(e.g greedy algorithm) to decrease the solution space
[10,9,2]. In [11] an extension is proposed, which improved the quality by using
index on the selected views. In [3] a ”chunk” based precomputation method
was introduced. This method precomputes a subset of chunk aggregates which
provide better but not near optimal results over the heuristic approaches.

Genetic algorithms (GA): The above methods are effective when the num-
ber of views is relatively small. In order to obtain better solutions for a bigger
number of views with respect to view maintenance and query processing costs
genetic algorithms have been introduiced [16,4]. The basic idea is to start with
a random initial population and generate offspring by random variations (e.g.,
crossover and mutation). The ”fittest” members of the population survive the
subsequent selection. The algorithm terminates as soon as there is no further
improvement over a period or after a predetermined number of generations. The
fittest individual found is the solution. However, the possibility of infeasible so-
lutions creates some problems. In fact, the approach proposed in [4] does not
contain a ”penalty” method to discourage infeasible solutions. This deficiency
has subsequently been addressed in [16].

Randomize algorithms: Algorithms in this class pursue a completely different
approach: a set of moves is defined. These moves constitute edges between the
different solutions of the solution space; two solutions are connected by an edge
if (and only if) they can be transformed into one another by exactly one move.
Simulated Annealing(SA) as a type of randomize algorithm performs a random
walk along the edges according to a cooling schedule, and terminates as soon
as no applicable ones exist or lose all the energy in the system(frozen state). In
[19,17], SA has been applied to the view selection problem. [19], showed that by
using SA the cost of a selected set of materialized views is up to 70% less than
the genetic [4] and heuristic algorithms [15].

Hybrid algorithms: Hybrid algorithms combine the strategies of pure deter-
ministic and pure randomized algorithms. Solutions obtained by deterministic
algorithms are used as starting points for randomized algorithms or as initial
population members for genetic algorithms. In [5], hybrid approach has been
applied for the view selection problem, which combines the power of genetic al-
gorithms in global search with heuristic’s ability in fine-grained local search, to
find a good set of materialized views.

In [4,15,19,5], GA and SA tries to find the best set of intermediate results
(views) in the Multiple View Processing Plan(MVPP) graph [15] so that the cost

Parallel Simulated Annealing for Materialized View Selection 123

of query processing and view maintenance is minimized. However, the number
of views in the MVPP graph is relatively small(e.g: 60 queries and 250 views). In
[16,10] genetic algorithms and heuristics have been proposed to select the best
set of views to materialize from an AND/OR view graph [9]. The number of
nodes in their AND/OR view graph is not going further than 250 either.

In this paper we introduce a new approach for materialized view selection
using Parallel Simulated Annealing (PSA) to select views from an input Mul-
tiple View Processing Plan (MVPP). With PSA, we are able to perform view
selection on MVPPs having a much larger number of queries and views, which
reflects the real data warehousing environment. As solution quality is affected by
the number of times that the initial solution is perturbed, by performing simu-
lated annealing with multiple inputs over multiple compute nodes concurrently,
PSA is able to increase the quality of obtained sets of materialized views. In ex-
perimental study, conducted on real production data with more than 250 queries
and thousand of views (intermediate nodes), we showed that our approach using
PSA in conjunction with MVPP outperforms heuristic method [15] and sequen-
tial SA [19] to the extent of factor five considering the cost of obtained set of
views.

The rest of this paper is organized as follows: Section 2 gives an overview
on our framework for the materialize view selection problem, followed by our
running example and some preliminaries for the Multiple View Processing Plan
(MVPP) and its cost model. Section 4 discusses our Parallel Simulated Anneal-
ing(PSA) approach and how we apply PSA to solve materialized view selection.
Section 5 present and analyse our experimental results. Section 6 concludes the
paper.

2 Materialized View Selection

Materialized view selection is an important design decision in data warehouse
construction. Here we present our framework to select a set of views to mate-
rialize based on the given frequently used set of queries in the data warehouse
environment. As figure 1 shows, the input is a list of frequently used queries.
This list will then be an input to our XML convertor box, which translates the
text queries to XML format. We found that the MVPP builder works better with
XML format than with plain text. The out-put from the XML convertor will go
to the MVPP builder which creates the MVPP graph. The MVPP graph will be
an input to our parallel simulated annealing algorithm. The output from the sim-
ulated annealing algorithm would be an appropriate set of nodes to materialize
in order to minimize the query processing and view maintenance cost.

2.1 Running Example

In this section, we present an example to motivate the discussion of materialized
view selection in data warehouses. Our example is taken from a sample data
warehouse application that analyzes trends in sales, and which was used in [14].
We used this running example just for explanation, however the data and query

124 R. Derakhshan et al.

Fig. 1. A framework for materialized view selection in data warehousing environments

sets which we used for our experiments are explained in section 5. The relations
and the attributes of the running example’s schema are:

Product (Pid, name, Did)
Division (Did, name, city)
Order (Pid,Cid, quantity, date)
Customer (Cid, name, city)
Part (Tid, name, Pid, supplier)

We use Pd, Div, Ord, Cust and Pt to refer to the above relations. Further-
more, we assume that all of these relations are stored at the same site and we do
not need to consider data communication costs in our cost calculation. Suppose
that we have the four following frequently used queries:

Query 1: Select Pd.name Query 2: Select Pt.name
From Pd, Div From Pd, Pt, Div
Where Div.city= "LA" and where ere Div.city="LA"
Pd.Did=Div.Did and Pd.Did=Div.Did

and Pt.Pid=Pd.Pid

Query 3: Select Cust.name, Query 4: Select Cust.city,date
Pd.name, quantity From Ord, Cust
From Pd, Div, Ord, Cust Where quantity>100 and
Where Div.city= "LA" and Ord.Cid=Cust.Cid
Pd.Did=Div.Did and
Pd.Pid=Ord.Pid and
Ord.Cid=Cust.Cid and
Date > 7/1/96

In Figure 2 we show a global query access plan for the above four queries.
This plan is referred to as the Multiple View Processing Plan (MVPP)[15]. The
query access frequencies are indicated above each query node. For simplicity, we
assumed that the base relations Pd, Div, Ord, Cust, and Pt are updated once
during the process of materialized view selection. There are different options for
selection of a set of views to be materialized: (1) materialize all of the nodes in
the MVPP; (2) materialize some of the intermediate nodes (e.g. tmp2, tmp3,
tmp7, etc.); (3) do not materialize any of the nodes in MVPP. Option (1) and
(3) are not realistic because for option (1), we do not have enough time and
space to materialize all of the nodes in MVPP. Option (3) implies that we have

Parallel Simulated Annealing for Materialized View Selection 125

to execute all queries on the raw data set which will result in excessive query
processing times. The best option is to materialize an appropriate subset of views
that minimizes view maintenance and query processing costs.

Suppose there are some materialized intermediate nodes in the MVPP. For
each query, the cost of query processing is its query frequencies multiplied by the
cost of the query accesses to the materialized nodes. The maintenance cost for
materialized view is the cost used for construction of the view (here we assume
that rebuilding is used whenever an update of an involved base relation occurs)
[15]. For example, if tmp2 is materialized, the query processing cost for Q1 is
10 ∗ 35.25. The view maintenance cost is 2 ∗ (35.25 + 0.25). The total cost for
an MVPP is the sum of all query processing and view maintenance costs. What
follows is a specification and the definition of the cost model for an MVPP.

3 Multiple View Processing Plan (MVPP)

We are using an MVPP [15] together with parallel simulated annealing for se-
lecting the best set of views to materialize. As shown in Figure 2, the MVPP is a
directed acyclic graph (DAG) that represents a query processing plan. The leaf
nodes in this graph represent the base relations, and the root nodes represent
the queries. Analogous to query execution plans there can be more than one
MVPP for the same set of views. This depends upon the access characteristics
of the applications and physical data warehouse parameters. We choose one of
the possible optimal MVPPs. Note that the quality of the selected MVPP can

Fig. 2. A MVPP for running example queries

126 R. Derakhshan et al.

effect on our result. An MVPP is a DAG M = (V, A, Ca
q , Cr

m, fq, fu) where V is
a set of vertices, A is a set of arcs over V defined as follows:

– For every relational algebra operation in the query tree, for every base rela-
tion, and for every distinct query, create a vertex;

– For v ∈ V, T (v) is the relation generated by the corresponding vertex v. T (v)
can be a base relation, intermediate node while processing a query, or the
final result for a query;

– For any leaf vertex v, (that is one which has no edges pointing to the vertex),
T (v) corresponds to a base relation. Let L be a set of leaf nodes;

– For any root vertex v (that is one which has no edges going out of the vertex),
T (v) corresponds to a global query. Let R be a set of root nodes;

– If the base relation or intermediate result relation T (u) corresponding to
vertex u is needed for further processing at a node v, introduce an arc u −→
v;

– For every vertex v, let S(v) denote the source nodes which have edges pointed
to v; for any v ∈ L,S(v) = φ, S∗(v) be the set of descendants of v;

– For every vertex v let D(v) denote the destination nodes to which v is is
pointed; for any v ∈ R , D(v) = φ;

– For v ∈ V ,Ca
q is the cost of query processing q accessing T (v); Cr

m(v) is the
cost of maintaining T (v) based on changes to the base relation S∗(v) ∩R ,
if T (v) is materialized.

– fq, fu denote query frequency and base relation maintenance frequency re-
spectively.

3.1 Cost Model

We can now define the cost function for our problem, similar to the cost function
in [15]. The cost function has two parts. One is the query processing cost:

Cqueryprocessing(v) = Σq∈RfqC
q
a(v)

the second part is the materialized view maintenance cost:

Cmaintenance(v) = Σr∈RfuCr
m(v)

the total cost is the sum of the query processing and maintenance costs:

Ctotal(v) = Cqueryprocessing(v) + Cmaintenance(v)

Our goal is to find the set of views so that if the members of the set are mate-
rialized then the value of Ctotal will be smallest among all possible feasible sets
of materialized views.

4 Parallel Simulated Annealing for Materialized View
Selection

The motivation to use a Parallel Simulated Annealing (PSA) algorithm in solv-
ing the materialized view selection problem was based on observing that the

Parallel Simulated Annealing for Materialized View Selection 127

data warehouse has a huge number of views and queries. Therefore in the view
selection problem the solution space has many local minimas. A simple local
search algorithm proceeds by choosing a random initial solution and generating
a neighbor from that solution. The neighboring solution is accepted if it is a cost
decreasing transition. Such a simple algorithm has the drawback of often being
trapped to a local minimum. The simulated annealing algorithm, though by it-
self it is a local search algorithm, avoids getting trapped in a local minimum by
also accepting cost increasing neighbors with some probability. In sequential SA
according to [20]: first an initial solution is randomly generated, and a neighbor
is found and is accepted with a probability of min(1,exp(-δ/T), where δ is is the
cost difference and T is the control parameter corresponding to the temperature
of the physical analogy and will be called temperature. On the slow reduction
of temperature, the algorithm converges to the global minimum, but the time
taken increases drastically.

Simulated annealing is inherently sequential and hence very slow for problems
with large search space. Therefore, to speed up the computation a parallelization
of SA is very desirable. Also, since solution quality in the SA algorithm is affected
by the number of times that we perturb an initial random solution, the paral-
lelization of SA with multiple inputs over multiple compute nodes concurrently
will lead us to the better quality of solution.

In the following subsections, we describe how to apply PSA to design a so-
lution for the materialized view selection problem. More precisely, we provide
a suitable representation of solution space, followed by PSA’s parameters and
their desirable values.

4.1 Parallel Simulated Annealing Framework

There have been many attempts toward parallelizing simulated annealing. Each
of these methods classified parallel simulated annealing differently. Classification
in [6][12] distinguished between single and multiple-walks (Figure 3). This is the
first distinguishing criterion: the number of paths which are evaluated in the
search space of the optimization problem. In a single-walk algorithm only a
single path in the search space is traversed, whereas in a multiple-walk approach
several different paths are evaluated simultaneously. In single-walk algorithms
after evaluating a part of the neighborhood of the current solution either only
one step is traversed (single-step parallelism) or a sequence of steps is made from
the current solution (multiple-step parallelism). In multiple-walk algorithms the
parallel walks can be independent or may interact according to a communication
pattern.

In this paper, we are using the independent walks parallelization which is
called the Multiple Independent Runs(MIR) [7]. In this parallelization strategy
no communication of moves or solutions is required. Independent runs of sequen-
tial SA are executed in each processor and the best found solution is chosen as
the end result. Therefore, there is no need to add any communication cost to
the total cost of the obtained set of materialized views.

128 R. Derakhshan et al.

Fig. 3. Classification of parallel approaches for simulated annealing

4.2 Solution Representation

The problem to be solved can be stated as follows: given a MVPP graph (see
figure 2) we attempt to find the best set of intermediate nodes (views) that can
answer all queries with minimal cost. We do not use an MVPP directly as input
into our PSA algorithm. We first convert the set of views to a binary string of 1s
and 0s to represent views that will and will not be materialized, respectively. Our
mapping strategy differs from [4],[5] and [16]. We number our nodes starting at
the base relations moving left to right, and we continue up to the right-most node
at the top of the graph. Nodes are numbered 0 to m-1 (where m is the number
of intermediate nodes). We use a mapping array of size m-1 where each index in
the array corresponds to a graph node. In our mapping array a ’1’ denotes that
the corresponding node in the graph should be materialized and a ’0’ that the
node is not materialized. For example in the binary string (0,0,0,0,1,1,0,0,1,1,0)
we will materialize nodes 4,5,8 and 9.

4.3 Parallel Simulated Annealing Parameters

The success and quality of the SA algorithms either sequential or parallel relies
on choosing the right parameters. Generally, we can categorize SA parameters
into two separate classes: generic parameters and problem specific parameters.
Generic parameters such as: initial temperature, cooling schedule and run factor
are concerned with parameters of the SA algorithm itself . The problem specific
parameters such as: initial configuration of our solution space, perturbing the
configuration and cost function are dependent on the specific problems.

Here we first explain each of the generic parameters :

Initial temperature: The temperature T can affect the number and ratio of
acceptance of each move. This value has traditionally been chosen so that nearly
all moves are accepted. We set our starting temperature large enough to allow

Parallel Simulated Annealing for Materialized View Selection 129

an acceptance value of 90. If the starting temperature is larger, the run length
may increase with no improvement in cost. Too low temperature may lead to
premature levelling off of the algorithm.

Cooling schedule: The temperature decrement factor for the exponential cool-
ing is set to a constant value of 0.7. This value performed sufficiently well on our
problem, although the algorithm is not particularly sensitive to this parameter.

Run factor: In this paper we use MIR which provides a better quality solution
than the solution of a sequential run with the same length. We have another
important parameter which we call run factor. a bigger value of run factor means
more iterations for each run and we will gain the better quality solution. However,
this increasing run length will increase the time length for each run and the
complete annealing process. So we have to choose a run factor big enough to gain
the high quality of answer in a reasonable amount of time. In our experiments,
we found that the quality of answer is heavily depending on the value of run
factor. Thus, we set the appropriate value for run factor after many test runs.

The problem specific parameters are:

Initial configuration: In our initial configuration we map array with a random-
ized set of zeros and ones. We do not employ a penalty function to discourage
infeasible solutions, instead we use a simple verification method. We check the
feasibility of each initial configuration against the number of queries that the so-
lution can answer. If the solution is not feasible, we simply bypass it. For example
the sequence (0,0,0,1,0,0,1,0,0,0,0) is a feasible solution for our sample problem.
In figure 2 the materialized node 3 can answer queries 1 to 3 and materialized
node 6 can answer the 4th query.

Perturbing the configuration: In the spirit of the physical annealing pro-
cess, neighboring configurations must be similar in the sense that they represent
only a slight perturbation in the system’s state[18]. We define the neighborhood
of a configuration to contain all configurations that differ from it by giving a
50% chance to each randomly chosen node to be materialized or unmaterial-
ized. For example, for solution (0,0,0,1,1,0,1) we randomly pick node number
4 whose value is 1, then we just simply change the value to 0. So our solution
after perturbing would be (0,0,0,0,1,0,1). Our experiments showed that this sim-
ple method ensures that our annealing algorithm will not get trapped in local
minima in early stages.

Cost function: We use the cost function described in section 3.1. For example,
to calculate the overall cost for the solution (0,0,0,1,0,0,1,0,0,0,0) we add Ctotal

for nodes 3 and 4.

5 Experimental Evaluation

To show the practical relevance of our approach to materialized views selec-
tion problem, we performed an extensive experimental evaluation and compared
it with heuristic method [15] and sequential SA because in previous study it

130 R. Derakhshan et al.

was shown that the sequential SA is better than the GA [19]. The experiment
involves execution of our PSA application over an optimized MVPP for a set
of queries. The PSA application is a C++ program, which uses a robust PSA
library (parSA 2.1) implementation [8] with the addition of materialized view se-
lection component. Tests are performed on SUN Microsystems V20z dual AMD
Opteron 2.6 GHz with 4GB RAM. The MVPP input is provided by our custom
C++ MVPP builder, which creates an optimized MVPP for testing set of SQL
queries, their frequency of usage and number of rows in tables as a input. The
number of nodes in our MVPP inputs exceeds one thousand. For the testing, we
used the real data from production database. This database is used for genera-
tion of data warehousing database, which analyzes the trend in using university
resources. The source database consist of more than 100 relations. The number
of rows in particular tables is up to 10 million. We have chosen 250 frequently
used queries and assigned frequency according to usage.

5.1 Results

In Figure 4 we show results for our PSA algorithm (for 4, 8 and 16 compute
nodes) against the heuristic and sequential SA algorithms. The heuristic algo-
rithm provides a benchmark for our normalized results. The graph shows that
our PSA algorithm approach generates solutions with costs more than 4 times
less than the heuristic algorithm. For a smaller number of queries the results for
sequential SA and PSA are similar. For a larger number of queries (more than
150) the PSA algorithm outperforms sequential SA, particularly for 16 compute

Fig. 4. Comparison of the solution quality (view maintenance and query processing
costs) between our PSA, sequential SA algorithm, and heuristic method (normalized
to “1”)

Parallel Simulated Annealing for Materialized View Selection 131

nodes. The PSA results are consistently better than both the sequential SA and
heuristic algorithms.

6 Conclusion and Future Work

In this paper we have described a new approach that is demonstrably better
than the existing approaches for materialized view selection based on Parallel
Simulated Annealing. In experimental study we show that our approach provides
a significant improvement in the quality of the obtained set of materialized views
compared to previously used methods for materialized view selection (Heuris-
tic method and sequential SA). Additionally we show that our method can be
efficiently applied to the large data warehousing systems, this leads to a signif-
icant improvement in query processing time and view maintenance costs. More
specifically, in this study, we:

– Classified the existing methods for materialized view selection problem in
order to identify their advantages and disadvantages,

– Proposed Parallel simulated annealing (PSA) framework which uses as input
Multiple View Processing Plan (MVPP),

– showed that PSA can be efficiently applied to larger number of queries.
Larger number of queries is more representative of real data warehousing
systems,

– Experimentally evaluated the PSA by comparing its performance with
heuristic method and sequential SA, and demonstrated its overall superior
performance. The PSA algorithm approach generates solutions with costs
up to 4 times less than the heuristic algorithm,

– We showed that PSA scaled with the increasing number of compute nodes.

As a future work we intend to do the testing with larger number of com-
pute nodes and to use a more sophisticated parallel approach to achieve further
improvement in the quality of results.

Acknowledgements

This research is partly sponsored by ARC (Australian Research Council) Dis-
covery grant - Coarse Grained Parallel Algorithms, nr. DP0557303.

References

1. Steinbrunn, M., Moerkotte, J., Kemper, A.: Heuristic and Randomized Optimiza-
tion for the Join Ordering Problem. Very Large Data Base 6, 191–208 (1997)

2. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing Data Cubes Effi-
ciently. In: ACM SIGMOD, pp. 205–216 (1996)

3. Shukla, A., Deshpande, P., Naughton, J.: Materialized View Selection of Multi-
dimensional Datasets. In: Proceeding of the 24th VLDB Conference, pp. 488–499
(1998)

132 R. Derakhshan et al.

4. Zhang, C., Yang, J.: Genetic Algorithm for Materialized View Selection in Data
Warehouse Environments. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS,
vol. 1676, pp. 116–125. Springer, Heidelberg (1999)

5. Zhang, C., Yao, X., Yang, J.: An Evolutionary Approach to Materialized Views
Selection in a Data Warehouse Environment. IEEE Transactions on Systems and
Cybernetics Part C: Applications and Reviews 31(3), 282–294 (2001)

6. Aarts, E., Lenstra, K.J.: Local Search in Combinatorial Optimization. John Wiley
(1997)

7. Kliewer, G., Tschoke, S.: A General Parallel Simulated Annealing Library and its
Application in Airline Industry. In: Proceedings of the 14th International Parallel
and Distributed Processing Symposium (IPDPS), pp. 55–61 (2000)

8. Kliewer, G., Tschoke, S.: Parallel Simulated Annealing Library (parSA), University
of Paderborn (2007), http://www.uni-paderborn.de/∼parsa

9. Gupta, H., Mumick, S.: Selection of Views to Materialize Under a Maintenance
Cost Constraint. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540,
pp. 453–470. Springer, Heidelberg (1998)

10. Gupta, H., Mumick, S.: Selection of Views to Materialize in a Data Warehouse.
IEEE Transactions on Knowledge and Data Engineering 17(11), 24–43 (2005)

11. Gupta, H., Harinarayan, V., Rajaraman, A., Ullman, J.D.: Index Selection for
OLAP. In: Proc. Int’l Conf. on Data Engineering, pp. 208–219 (1997)

12. Azencott, I.R.: Simulated Annealing: Parallelization Techniques. Wiley (1992)
13. Widom, J.: Research Problems in Data Warehouse. In: 4th International Confer-

ance on Information, Knowledge and Managment, pp. 25–30 (1995)
14. Yang, J., Karlapalem, K., Li, Q.: A Framework for Designing Materialized Views

in Data Warehousing Environment. Technical Report HKUST-CS96-35 (1996)
15. Yang, J., Karlapalem, K., Li, Q.: Algorithm for Materialized View Design in Data

Warehousing Environment. In: VLDB 1997, pp. 136–145 (1997)
16. Lee, M., Hammer, J.: Speeding up Materialized View Selection in Data Warehouses

Using a Randomized Algorithm. Int. J. Cooperative Inform. Syst. 10, 327–353
(2001)

17. Kalnis, P., Mamoulis, N., Papadias, D.: View Selection Using Randomized Search.
Data and Knowledge Engineering 42(1), 89–111 (2002)

18. Davidson, R., Harel, D.: Drawing Graphs Nicely using Simulated Annealing. ACM
Transactions on Graphics 15, 301–331 (1996)

19. Derakhshan, R., Dehne, F., Korn, O., Stantic, B.: Simulated Annealing for Mate-
rialized View Selection in Data Warehousing Environment. In: Proceedings of the
24th IASTED international conference on Database and applications, pp. 89–94
(2006)

20. Janaki, R., Sreenivas, T.H., Subramaniam, G.K.: Parallel Simulated Annealing
Algorithms. Journal of parallel and distributed computing 37, 207–212 (1996)

http://www.uni-paderborn.de/~parsa

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 133–143, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Operational Approach to Validate the Path of BGP

Ping Li, Wanlei Zhou, and Ke Li

School of Engineering and Information Technology,
Deakin University, Melbourne, Australia

{pingli,wanlei,ktql}@deakin.edu.au

Abstract. BGP (Border Gateway Protocol) is a fundamental component of the
current Internet infrastructure. However, BGP is vulnerable to a variety of at-
tacks, since it cannot ensure the authenticity of the path attributes announced by
BGP routers. Despite several solutions have been proposed to address this vul-
nerability, none of them is operational in real-world due to their immense im-
pact on original BGP. In this paper, we propose a Deployable Path Validation
Authentication scheme, which can effectively validate the path of BGP.
Through analysis and simulation we show that this scheme has little impact on
the performance and memory usage for the original BGP, and can be adopted in
practice as an operational approach.

Keywords: BGP, security, AS, Internet.

1 Introduction

BGP [1] is the de facto inter-domain routing protocol of the Internet and has been
deployed since the commercialization of the Internet. However this protocol implic-
itly depends on hearsay, since each BGP router believes and repeats what it has heard
from other BGP routers. Malicious routers can insert false information into the path
attributes, which makes many attacks possible, since path attributes are factors to
make route selection decisions. This vulnerability of BGP is considered as lack of
path validation, which contributes greatly to the increasing number of Internet attacks

Many solutions have been proposed to authenticate path validation. S-BGP (Secure
BGP) [2] is one of the earliest security proposals, and probably the most concrete one.
It uses cascaded signatures, a method that every BGP speaker along the way digitally
signs the data, to secure path attribute. This proposal can provide high security. How-
ever it takes time to generate and verify signatures when sending and receiving route
every time, so its convergence time is unbearable. Furthermore, signature information
makes BGP message larger and increases storage requirement. The immense cost of
S-BGP is the main cause of its not being deployed in practice.

soBGP (secure origin BGP) [3] is proposed as an alternative to S-BGP. It uses AS
(autonomous systems) topology to validate aspath, which is the most important path
attribute. Although this method degrades security to some degree compared with S-
BGP, it’s a good thought by getting tradeoff of security and cost. However it still
can’t be deployable, since the method of getting AS topology in soBGP counters the

134 P. Li, W. Zhou, and K. Li

distributed nature of BGP. And soBGP introduces new messages, which is a chal-
lenge for BGP deployment.

In this paper, we propose a Deployable Path Validation Authentication (DPVA)
scheme which has two objectives: to be deployable and to have path validation. To be
deployable means that the DPVA scheme must have little impact on the original BGP,
must be easily compatible with original BGP, and must be deployed incrementally.
Path validation means that the DPVA scheme can ensure path validation. In this
scheme, we achieved above two objectives by building an aspath table which reflects
genuine AS topologies of Internet, and then validating paths by checking this aspath
table. It looks similar with soBGP, but it can be deployable and is more secure than
soBGP. Our analysis and simulation show that this scheme has little impact on the
performance and memory usage of the original BGP, and can be deployed in the real
world.

This scheme is not intended as a replacement for the comprehensive BGP security
infrastructures. We don’t specifically address origin authentication which is another
security issue for BGP, and neither deal with the public key distribution of BGP
routers. However it can replace the path authentication part of any such BGP security
solutions (e.g., S-BGP, soBGP).

A comprehensive analysis of the security vulnerabilities in BGP is developed by
Murphy in [5]. The author points out that BGP has three fundamental vulnerabilities:
(1) BGP has no internal mechanism that provides strong protection of the integrity,
freshness, and peer entity authenticity of the messages in peer-peer BGP communica-
tions. (2) No mechanism has been specified within BGP to validate the authority of an
AS to announce NLRI information. (3) No mechanism has been specified within BGP
to ensure the authenticity of the path attributes announced by an AS. This paper
focuses on the third issue.

2 Design of the Deployable Path Validation Authentication
Scheme

In BGP each autonomous system (AS) is assigned a unique integer as its identifier,
known as the AS number. An AS manages subnetworks, each one described by an IP
prefix--a range of IP addresses. A router running the BGP protocol is known as a BGP
speaker. A BGP speaker communicates with a set of other BGP speakers, known as
its peers, or neighbours. BGP peers constantly exchange the set of prefixes and paths
for the prefixes--via UPDATE messages. The paths are also called path attributes
which are a set of attributes of the prefixes in the UPDATE messages. Aspath is the
most important attribute. It’s a vector of ASes that packets must traverse to reach the
originating AS. Last AS in the vector is the originator of this route. Each AS adver-
tises the prefixes it is originating to its peers, and forwards the received information to
each of their other neighbours. When BGP speaker forwards prefixes to other ASes, it
will append it’s own AS number to the aspath.

The original BGP (i.e. BGP4) just supports the IPv4 route. To support routing for
multiple network layer protocols, MP-BGP (Multiple-protocol extension for BGP) [4]
was defined. It uses the capability advertisement procedures to determine whether the
speaker could use multi-protocol extensions with a particular peer. And it uses two

 An Operational Approach to Validate the Path of BGP 135

new attributes, MP_REACH_NLRI (Multi-protocol Reachable NLRI) and
MP_UNREACH_NLRI (Multi-protocol Unreachable NLRI) to carry the set of reach-
able and unreachable prefixes for corresponding Network Layer protocols.

In this study, our goal is to provide a Deployable Path Validation Authentication
(DPVA) scheme. This scheme can be divided in two steps. The first step is to build an
aspath table which reflects the genuine AS topologies of Internet. To get good com-
patibility with original BGP, we introduce a new address family -- AFI_AS, and use
MP-BGP to get this aspath table. To secure aspath information, we introduce the
aspair declaration which can effectively protect aspath from being tampered. The
second step is to ensure path validation. When a BGP speaker receives a prefix, it will
check if there is a same aspath in the aspath table with the prefix’s aspath. A hash
searching algorithm is introduced in the checking process, so that the path authentica-
tion has little impact on the original BGP performance.

Our design also supports incremental deployment, because immediate deployment
and use of any new technique throughout the Internet is not possible. We provide
different options for different deployment stages.

We don’t deal with the public key distribution in our scheme, and we assume every
BGP speaker has owned a Public/private Key or all BGP Speakers in every AS have
shared a Public/private Key which depends on the policy. Since lack of security is a
norm for Internet routing protocols besides BGP, and we believe uniform key distrib-
ute mechanisms will be generated in the near future. The key distribute methods in
other BGP security solutions, such as SBGP, soBGP, may be used in our scheme as
well.

2.1 Building As-Path Table

BGP is an AS distance-vector protocol: every BGP speaker appends its own AS to the
aspath of received prefixes, and then forwards these prefixes with the appended as-
path to its neighbours. So in the original BGP design we can get all aspaths reaching
other ASes from aspaths of received prefixes. Therefore if every AS just sends a BGP
update message without actual prefixes, and other ASes forward them following
above rules, then we also can get all aspaths reaching other ASes from aspath of
these few update messages. Furthermore, if the aspath can’t be maliciously modified
in the above forwarding processing, then we can get an aspath table which reflects the
genuine AS topologies of Internet. This is the key idea of our design.

We implement the above idea by using a new address family (AFI_AS) in MP-
BGP. Because MP-BGP had been carried out by most of the router manufacturers, it
will be effortless to upgrade devices if just to support a new address family. MP-BGP
can be well compatible with original BGP. Capability advertisement procedures can
determine if neighbours support AFI_AS, so the new format definition will not cause
any compatibility problems. And we don’t have to introduce new messages by using
MP-BGP. In addition, the processing of every address family is independent, so the
processing of normal BGP route won’t be affected by the AFI_AS address family.

To ensure the AFI_AS aspath won’t be tampered, we introduce the aspair declara-
tion, which is signed by a BGP speaker to authenticate one direction neighbour rela-
tionship of a pair of AS. Aspair declaration is composed of the sending AS, receiving
AS, signer, sequence number and signature. The sending AS (ASs) and receiving AS

136 P. Li, W. Zhou, and K. Li

(ASr) form one direction neighbour relationship. We use (ASs ASr) to donate this
aspair. The signer is the identifier of the sending AS. The sequence number indicates
the time sequence that signature is issued. For an aspair, a more recently issued signa-
ture means a larger sequence number. The sending AS encrypts the aspair and the
sequence number using its private key (Ks) to create the signature. We use (ASs
ASr)Ks to donate the aspair declaration. The aspair declaration is carried in the pre-
fix domain of the MP_REACH_NLRI or MP_UNREACH_NLRI attribute.

When the AFI_AS address family is initiated, an aspath table, which holds all the
verified aspath, and an aspair table, which holds all the aspair declarations, should be
generated. When a new AFI_AS neighbour is established, a BGP speaker will send all
the aspaths in the aspath table, and its local AS to this neighbour.

When a BGP speaker sends an AFI_AS aspath to its neighbour, firstly, it will ap-
pend its local AS number to this aspath, and puts all aspair declarations along this
aspath, and the aspair declaration that its own AS to receipt AS, to the
MP_REACH_NLRI attribute. For example, Suppose ASk has an aspath {ASk -1, ASk-2
…AS0}, AS0 is the origin AS of the aspath. ASk would forward this aspath to ASk+1.
Then it should append ASk to this aspath, to get aspath s {ASk, ASk-1 …AS0}, and
find all aspair declarations (ASi Asi+1)Ki, i=0…k-1, and (ASk ASk+1)Kk, then put them
in the MP_REACH_NLRI attribute which can include many aspair declarations.
Aspath_s is carried in the aspath attribute domain.

If a BGP speaker receives AFI_AS update, it should check the following: if it had
received all the aspair declarations along the aspath attribute; if it had received the
aspair declaration that sending AS to its own AS; if all the aspair signatures had been
verified; and if the first AS in the aspath is the sending AS. If all the checks pass, then
the aspath is put into the aspath table which will be used to authenticate the BGP
route, and it is forwarded to other neighbours as well. For the example mentioned
above, AS k+1 would receive an AFI_AS update, with aspath attribute aspath_s, and
aspair declarations (ASi Asi+1)Ki, i=0…k. Lack of any aspair declarations would lead
to the failure of the aspath check.

Fig. 1 shows how the aspath and aspair signatures are transmitted. We have four
ASes numbered as 1, 2, 3, and 4, respectively. AS 1 initiates the process by sending
AFI_AS announcement [{1}, S1], which means it has aspath 1. S1 is the aspair decla-
ration, generated by signing (1 2), its AS number first, then the intended recipient,
then a sequence number by its private key K1. When AS 2 receives this announce-
ment, it firstly verifies every aspair declaration S1, then will add it’s own AS, and
send AFI_AS announcement [{2, 1}, S1, S2] to AS3. Other ASes continue this proc-
ess. If all AS initiate an AFI_AS aspath, then every AS can get all aspaths to reach
other ASes. For example, AS 4 will get aspath, {3,2,1},{3,2},{3}.

Fig. 1. The process of AFI_AS

 An Operational Approach to Validate the Path of BGP 137

Our design also supports withdrawing aspaths. When a BGP speaker (ASlocal) de-
tects a BGP neighbour is down (ASshut), it will delete all the aspaths received from
this neighbour, and then send an AFI_AS update to other neighbours with an aspair
declaration withdrawal. The withdrawing aspair is (ASshut ASlocal), and the with-
drawing aspair declaration (ASshut ASlocal)Klocal is signed by the ASlocal, not the
ASshut, which can avoid malicious aspath withdrawal, and only the AS whose
neighbour relationship is down is entitled to announce the corresponding aspair with-
drawal. The aspair declaration withdrawal is put in MP_UNREACH_NLRI attribute.
The receiver of this aspair withdrawal will forward it to other neighbours, and delete
all the aspaths related to this aspair. As shown in figure 2, if AS 3 detects that the
neighbour AS 2 becomes down, it will delete aspath {2,1},{2}from its aspath table,
then sends aspair withdrawal (2,3)K3 to AS 4. AS 4 will delete aspath
{3,2,1},{3,2}from its aspath table.

Aspair declaration can effectively protect aspath from being tampered. Suppose
ASk has an aspath{ASk-1 …ASa …ASb...AS0}, and ASa is not adjacent with ASb. If
AS0 wants to tamper the aspath, and sends as AS_AFI aspath {ASk-1 …ASa
ASb...AS0} to its neighbour, it also needs to send an aspair declaration {ASb ASa}Kb.
But because only ASb owns the Kb, so ASk can’t generate this declaration, and can’t
tamper the aspath successfully.

Our design also can prevent aspath replay attacks, which hasn’t been considered in
other proposals. When a BGP speaker receives an aspair withdrawal, the aspair dec-
laration may just be labeled expired. If it later receives this aspair declaration again,
the BGP speaker would check the sequence number of the new aspair declaration. If
this sequence number is not larger than the expired one, then the new aspair declara-
tion will be ignored.

In addition, we set a limitation for being an AFI_AS neighbour that only BGP
speakers connected directly can be AFI_AS neighbours, which can defend colluding
adversaries. Suppose ASa has an as-path {ASk …ASb...AS0}, then ASa and ASb can
collude to tamper the aspath to {ASb...AS0} by established BGP neighbours in tun-
nel. However, with this limitation – ASa and ASb can’t be AFI_AS neighbours since
they are not connected directly, so colluding attacks is also impossible. Furthermore,
because the configuration of different address family can be different, so we don’t
need to worry about the compatibility with old configurations.

We choose RSA as the cryptographic algorithm. It’s well known that the overhead
for operating signature and verifying signature is huge. But the overhead is different
for different cryptographic algorithm and different processing strategy. Operating
signature takes longer in RSA than in DSA. However verifying signature takes an
order of magnitude longer in DSA than in RSA. For our scheme, the count to sign is
the number of BGP speaker’s neighbours. The count to verify signature is the number
of aspair. The number of aspair is far more than the number of BGP neighbours, so
we select the RSA as our signature algorithms.

To avoid sending repeated aspair declaration and verifying signature repeatedly, if
an aspair declaration had been sent to a neighbour before, we can choose don’t send it
again. And when a BGP speaker receives a repeated aspair declaration, if the se-
quence number is not larger than the old one, it may not verify again. This can im-
proved the performance further. AS shown in figure 2, in AS 4, it will have aspath
{1,2,3},{2,3},{3}, so aspair (3,4) will be sent by AS 3 three times.

138 P. Li, W. Zhou, and K. Li

BGP has two kinds of neighbour, EBGP and IBGP. All above description is for
EBGP. There is some difference for IBGP, however. For example, BGP speakers just
forward aspath to IBGP neighbours, not appending its own AS, and do not initiate its
own AS to IBGP neighbours. There is similar difference for withdrawing process as
well.

2.2 Checking Path Validation

Now the aspath table has been established by AFI_AS address family. When received
a BGP normal route, the BGP speaker should check if there is an identical aspath in
the aspath table. To improve the performance of this process, we only store one as-
path attribute for identical aspath attributes of BGP routes and AS_AFI aspath, which
point to this aspath, and we use counters to identify how many routes or AS_AFI use
the aspath. All these aspath are organizied in hash, so that they can be searched
quickly. Because many routes have the same aspath, so the memory usage of system
can be saved as well.

Next, we give the detailed algorithms for receiving a verified AS_AFI aspath and
for receiving a BGP normal route:

Algorithm: Receiving a verified AS_AFI aspath

search the aspath attribute hash
if not find one
 create an aspath attribute, add to hash table
 point the AS_AFI aspath to this aspath attrbute
 label this aspath attribute verified
else if find one
 point the AS_AFI aspath to this aspath attrbute
 if this aspath attribute is not verified
 label this aspath attribute verified
 find all the BGP routes which point to this
aspath attribute
 label them from invalid to valid
 (which may invoke sending them to neighbours)
add this AS_AFI aspath to aspath table
(which may invoke send AFI_AS aspath to neighbours)

Algorithm: Receiving a BGP normal route

search the aspath attribute hash
if not find one
 create an aspath attribute, add to hash table
 point the BGP route to this aspath attrbute
else if find one
 point the BGP route to this aspath attrbute
 if this aspath attribute is verified
 label the route from invalid to valid
add this route to BGP routing table

 An Operational Approach to Validate the Path of BGP 139

In practice, we recommend that sending AFI_AS aspath prior to sending the
routes, so that BGP speakers don’t have to find all the BGP routes which have the
same aspath attribute with the AFI_AS aspath.

From the above algorithms, we can see that normal BGP route processing is only
added a process of judging if the aspath has a verified flag. And usually the AS_AFI
aspath is received prior to BGP routes, so when BGP speaker receives routes, they
needn’t generate aspath. From this point of view, the performance of processing BGP
normal routes is improved.

2.3 Incremental Deployment

Our design also provides some options to support increment deployment.
In the early stage of deployment, AFI_AS is only supported by sparse ASes, so we

may set the policy that the routes whose aspath partly or wholly overlapped with
AFI_AS aspath have high priority. We even can set a different priority according to
the overlap degree. Routes with higher priority would have more chance to be
selected.

In the medium stage of deployment, AFI_AS may be supported by areas. These ar-
eas may need to change AFI_AS information. Our design can allow two remote BGP
speakers to establish AFI_AS neighbour across several ASes. But in this case, they
just forward AFI_AS aspath, and don’t append their own ASes to the aspath.

In the later stage of deployment, AFI_AS may be supported by nearly all ASes. So
we may set the policy that only the routes whose aspath is the same with one of
AFI_AS aspath are valid.

3 Evaluation

Huge negative performance impact on BGP is one of the main reasons why none of
the existing BGP security solutions are deployed in practice. Especially we can’t
ignore the memory overhead for storing signature, and CPU overhead for operating
signature and verifying signature. In this section, we present the memory overhead
and CPU overhead of our proposal through statics analysis and actual simulation. And
in both analysis and simulation, we use data source from real Internet BGP routes
obtained from RIS (Routing Information Service), so that the results can reflect the
actual application. RIS is an RIPE NCC project to collect and store Internet routing
data. It has some BGP monitoring points which establish BGP connections with some
real BGP routers, and accept BGP updates from these routers, but not send back
updates.

3.1 Memory Overhead

In our DPVA design, we add two tables: the aspath table and the aspair table. So we
can evaluate the memory overhead by computing how much memory the contents in
these two tables consume.

Firstly we extracted BGP routing tables of different AS respectively from the RIS
data of Jan.1, 2006. Then we randomly selected several AS’s routing table, and calcu-
lated their numbers of prefixes, aspaths and aspairs. From the result shown in table 1,

140 P. Li, W. Zhou, and K. Li

we can know that the numbers of prefixes, aspaths and aspairs are nearly consistent
in every AS. So we can use the average number to compute the memory overheard.
For the aspath table, since an aspath attribute which requires much memory has been
existed in the original BGP, so only the memory to organise the aspath table is re-
quired. Assuming the average size of organising an aspath is 64 bytes, 1.8M bytes
memory would be required for storing 28,708 aspaths. For the aspair table, if RSA
signature arithmetic is used, 128bytes will be required for one aspair, and 3.4M bytes
will be required for 26,808 as-pairs. In total, these two tables consume 5.2M bytes of
memory. Memory for storing one BGP route is about 0.8Kbytes in cisco’s routers,
which can be calculated from cisco’s data [8]. So 140M bytes memory will be con-
sumed for storing 174852 BGP routes. Therefore we are looking at 5.2M bytes of
memory cost, just adding 3.7% to the original BGP memory usage.

Table 1. Prefix, aspath, aspair and RA numbers of BGP routes

AS 4608 3741 513 16186 7018 3333 average
Prefix 175094 174189 177570 173756 173408 176454 174 852
Aspath 28586 28757 28627 28254 28845 29600 28708
Aspair 27171 27018 27382 27058 25071 27534 26808
RA 804440 531527 595372 787855 457916 557163 622378

We also evaluated the memory overhead for S-BGP’s path authentication. The RA
numbers S-BGP requires for these selected ASes is also shown in table 1. Assuming
the average size of RA is 128 bytes, the total memory for storing 622378 RAs is about
80M, which is far more than our scheme. Table 2 shows this comparison.

Table 2. Comparison of memory cost

 Original BGP Our Proposal (DPVA) S-BGP
Memory usage 140 MB 145.2 MB; 3.7% more 220 MB; 57.1% more

3.2 CPU Overhead

We evaluate the CPU overhead from two aspects: static analysis and actual simula-
tion. Firstly we analyse the cost of signing operation and verifying signature, since
cryptography consumes much CPU time. Then we present our simulation results
using Opnet.

In our design, the count for signing operation is the number of the BGP neighbour
AS. The count for verifying signature is the number of aspair. We calculated and
obtained these counts in the case of BGP routers rebooting from previous several
AS’s routing table we had extracted.

We also obtained the count for signing operation and verifying signature in S-BGP.
The analysis in [6] showed that the executing time to sign and verify signature using
the DSA algorithm is 0.015ms and 31ms respectively in a 200MHz system, and for
RSA algorithm is 50ms and 2.5ms respectively. S-BGP uses the DSA algorithm,
whereas we use the RSA algorithm. From collected data we can estimate the total

 An Operational Approach to Validate the Path of BGP 141

time for S-BGP to execute signature when rebooting in a router (200MHz) is more
than several hours, but our scheme needs no more than 2 minutes.

However, BGP routers normally are kept stable and must not reboot frequently for
keeping the Internet routing steady. So next we evaluated the cryptographic process-
ing impact in normal situation. Since BGP routes daily variation is not obvious, we
calculated the BGP routes monthly variation firstly, and then evaluated the processing
cost of these monthly variations.

We obtained the RIS data from the first day for several months of 2006, and calcu-
lated the stable and added aspairs, prefixes and aspaths in AS 7018. We found that
the number of added aspairs every month is about 1800. The cryptographic process-
ing for these aspairs is about 5s (2.5ms * 1800), which will not be a burden to normal
BGP processing.

We also found that the number of unstable aspaths (3000, according to collected
data) is only about 15% of unstable prefixes (20000, according to collected data),
which means the AS topology keeps relative steady when prefixes vary, and we
needn’t send AFI_AS aspaths frequently when prefixes vary.

Now we have analysed the impact of cryptography. Considering the CPU over-
heard is affected by many factors besides cryptography, we present our simulation
using Opnet further. We set up two routers configured as BGP neighbours with each
other, and then one router sends routing data to the other. We use the convergence
time of the other router to evaluate the CPU overhead. Convergence time indicates the
time to finish receiving and processing all routing update messages. Although the
Internet topology is very complex, our simulation can be considered a miniature of
whole Internet as our simulation includes a full routing processing: sending routes,
receiving routes and processing routes.

48

54.5

0

10

20

30

40

50

60

4608 3741 513 16186 7018 3333 AS

co
nv

er
ge

nc
e

tim
e(

s)

Original BGP

average BGP

DPVA

average DPVA

Fig. 2. Convergence time for processing whole routing table

142 P. Li, W. Zhou, and K. Li

Firstly we use the data of whole routing table from several selected ASes, and
simulate the case that router starting, receiving and processing whole routing table
from neighbour AS, which has the greatest overheard. Since the whole table simula-
tion time is large, we select one every four routes. As shown in fig. 2, we found that
the convergence time in our scheme only increases about 13.5% ((54.5-48)/48)
compared with the original BGP when routers starting.

Then we use the data of monthly dynamics, and simulate in the case that router
steady, and just processing a small quantity of varied routes. Fig. 3 presents the con-
vergence time for processing monthly dynamic variation of AS7018. We can see that
the CPU overhead of our scheme is small when routers are steady.

0

1

2

3

4

5

6

7

8

9

10

11

Jan Feb Mar Apr May 2006

co
nv

er
ge

nc
e

tim
e(

s)

Original BGP

DPVA

Fig. 3. Convergence time for processing dynamics in AS 7018

3 Conclusion

This paper proposes a Deployable Path Validation Authentication for BGP, which is
different from previous BGP security proposal in that it can be really deployed in
practice. It doesn’t introduce new message, nearly has no change to the normal BGP
route processing, and can be easily upgraded by manufactures. Most importantly is
that it has little performance and memory impact to the original BGP, and can be
deployed incrementally. At the same time, it can effectively protect paths from being
tampered. It can defend replay attacks and colluding attacks which were seldom con-
sidered in previous proposals.

References

1. Rekhter, Y., Li, T., Hares, S.: A Border Gateway Protocol 4 (BGP-4), RFC4271
2. Lynn, C., Seo, K.: Secure BGP (S-BGP), http://www.ir.bbn.com/sbgp/draft-clynn-s-bgp-

protocol-01.txt

 An Operational Approach to Validate the Path of BGP 143

3. White, R.: Architecture and Deployment Considerations for Secure Origin BGP (soBGP),
http://tools.ietf.org/html/draft-white-sobgp-architecture-01

4. Bates, T., Rekhter, Y., Chandra, R., Katz, D.: Multiprotocol Extensions for BGP-4, RFC
2858

5. Murphy, S.: BGP Security Vulnerabilities Analysis, RFC 4272
6. Nicol, D.M., Smith, S.W., Zhao, M.: Evaluation of Efficient Security for BGP Route An-

nouncements using Parallel Simulation. J. Simulation Practice and Theory 12, 187–216
(2004)

7. Hu, Y.-C., Perrig, A., Sirbu, M.: SPV: Secure Path Vector Routing for Securing BGP. In:
SIGCOMM 2004, pp. 179–192. ACM Press (2004)

8. Achieve Optimal Routing and Reduce BGP Memory Consumption,
http://www.cisco.com/warp/public/459/41.shtml

1-Persistent Collision-Free CSMA Protocols for

Opportunistic Optical Hyperchannels

Jing Chen1, Jianping Wang2, Hui Yu3, Ashwin Gumaste4, and S.Q. Zheng5

1 Telecommunications Engineering Program, University of Texas at Dallas,
Richardson, TX 75083

jxc030100@utdallas.edu
2 Department of Computer Science, City University of Hong Kong, Hong Kong

jianwang@cityu.edu.hk
3 Computer Engineering Program, University of Texas at Dallas,

Richardson, TX 75083
hxy041000@utdallas.edu

4 School of Information Technology, Indian Institute of Technology,
Powai, Mumbai, India 400076

ashwing@ieee.org
5 Department of Computer Science, University of Texas at Dallas,

Richardson, TX 75083
sizheng@utdallas.edu

Abstract. Recently, a new WDM optical network infrastructure named
SMART [1], which is capable of dynamically setting up, modifying, and
tearing down optical connections, was proposed. The performance of
SMART is determined by the performance of its hyperchannels, which
are essentially optical buses or light-trails. Previously proposed CSMA
protocols for unidirectional optical buses can be used as distributed
medium access control protocols for hyperchannels. However, these pro-
tocols are either unfair, or not work-conserving. In this paper, we propose
a class of work-conserving, collision-free, and fair CSMA protocols for op-
portunistic hyperchannels which are tailored hyperchannels for SMART.
We show that the performances of our proposed protocols are much bet-
ter than that of pi-persistent CSMA and that of priority-based CSMA
protocol in terms of throughput and fairness.

Keywords: Optical network, WDM, CSMA, SMART network, Light-
Trail, opportunistic hyperchannel.

1 Introduction

Optical Wavelength Division Multiplexing(WDM) technology has been consid-
ered as the basis of the next generation Internet for a while. However, the perfect
balance between the utilization of the enormous bandwidth provided by the op-
tical fiber and the satisfaction of ever-changing service requirements using the
commodity optical devices has not been well achieved.

Recently, a new optical network infrastructure called Scalable Multi-Access Re-
configurable Transport (SMART) hypernetwork has been proposed[1]. Equipped

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 144–156, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

1-Persistent Collision-Free CSMA Protocols 145

with a rich menu of switching techniques (such as circuit switching, pipelined cir-
cuit switching, packet switching and burst switching) and connection types (such
as dedicated, demand-assignment and elastic connections), SMART is able to
manage optimized connections, and enforce individual service qualities and over-
all network performance using the commodity optical devices.

The underlying physical network of SMART is a reconfigurableWDM hypernet-
work with reconfigurability distributed over network nodes. Such a reconfigurable
WDMhypernetwork consists ofmulti-access hyperchannels.Ahyperchannel, same
as Light-Trail[2], is essentially a unidirectional optical bus where each node in a
hyperchannel is capable of transmitting and receiving data. Thus, a hyperchan-
nel with n nodes can accommodate C2

n connections in a time-multiplexing mode
without complex optical switching configuration as studied in the optical networks
over the past decade. Such an architecture can efficiently utilize bandwidth in sub-
wavelength granularity. For connections with the source node and the destination
node residing in separate hyperchannels, a hyperpath consisting of multiple hyper-
channels with optical-electrical-optical (OEO) junctions connecting two adjacent
hyperchannels can be found to accommodate such connections.

Given the inherent bus property of the hyperchannel, one fundamental task
is to manage the access contention among the contending nodes in order to
improve the efficiency of the hyperchannel. Similar as the traditional Media
Access Control (MAC) protocols, the hyperchannel access control also aims to
achieve the balance of throughput and fairness.

There are two categories of dynamic multiple access coordination: centralized
dynamic scheduling (CDS) and distributed dynamic scheduling (DDS)1. In [3],
we introduced a class of CDS protocols and showed that these protocols can
emulate output queued scheduling of a multiplexer to ensure QoS under cer-
tain conditions. A major disadvantage of these CDS protocols is that a control
hyperchannel is required to deliver the transmission schedule.

DDS protocols for unidirectional optical buses have been well investigated in
the context of carrier sense multiple access (CSMA) protocols. The simplest DDS
protocol as proposed in [2] for the unidirectional optical bus is that whenever
the downstream nodes sense the data from the upstream nodes, the downstream
nodes will interrupt their transmissions and free the bus for the transmission
from the upstream nodes. For the simplicity of the presentation, such a DDS
protocol is referred to as priority based CSMA protocol in this paper. Priority
based CSMA protocol can obviously achieve near optimal throughput at the
cost of severe unfairness to the downstream nodes. Other CSMA protocols, i.e.
[4,5,6,7,8,9], which can be applied to hyperchannels, either suffer from significant
overhead (due to expensive optical collision detection) or are unfair (providing
some nodes more favorable service than others). Further, these protocols can be
applied to either fold bus or dual-bus, but not both. To reduce the overhead and
provide fairness, a CSMA protocol called pi-persistent protocol for slotted fold
bus is proposed in [10] and then extended for slotted dual-bus [11]. It was shown

1 In this paper, the term of multi-access control protocol and the term of packet
scheduling algorithm are used interchangeably.

146 J. Chen et al.

that theoretically pi-persistent protocols provide improved fairness, throughput,
and average packet delay, assuming that pis, which are the parameters used to
control packet transmissions, match the traffic pattern and service requirement.
Since traffic pattern and service requirement change dynamically, the complex
process of collecting traffic and service information, computing new pis, and
notifying all nodes with their new pis makes pi-persistent protocols highly non-
practical. Furthermore, there is probability that no nodes will transmit the data
even if they have data to transmit and the bus is idle in the pi-persistent proto-
cols, i.e. an idle time slot goes downstream while all nodes don’t transmit packets
with probability (1 − pi). Thus, pi-persistent protocols cannot fully utilize the
bus capacity.

The objective of this research is to achieve the high throughput close to the
Priority based CSMA protocol and the fairness close to pi-persistent protocols
without the overhead involved in pi-persistence protocols. We propose a class
of 1-persistent collision-free CSMA protocols where an intermediate node can
persistently transmit its traffic whenever it has the traffic in its queue, so called
“1-persistent” CSMA protocol. 1-persistent CSMA protocol can achieve the high
throughput and it may also result in the high collision if the traditional unidirec-
tional optical bus is applied. In this paper, the collision-free property is achieved
by utilizing the opportunistic hyperchannel, which is an innovative unidirectional
optical bus architecture introduced in [13]. In an opportunistic hyperchannel as
to be explained in detail later, any intermediate node which is about to transmit
the data will “cut” the hyperchannel into two segments where the traffic from
the upstream nodes will be intercepted at the current node and allow the current
node to transmit its data without collision. The current node will re-connect the
two segments of the hyperchannel into one once its queue is empty.

The remains of the paper is organized as follows. In Section 2, we introduce pi-
persistent protocols. In Section 3, we introduce the structure of an opportunistic
hyperchannel. In Section IV, we describe the features of a class of 1-persistent
CSMA/CF protocols. In Section 5, we give the performance analysis of the pro-
posed 1-persistent CSMA/CF protocol. We present our simulations results in
Section VI, and conclude the paper in Section VII.

2 pi-Persistent CSMA Protocol in an Unidirectional
Optical Bus

The carrier sense multiple-access (CSMA) is a type of widely used technique
in shared-medium packet communication systems. With CSMA, each node that
has a packet to transmit attempts to avoid packet collision by listening to the
channel, and based on the status of the channel, the node operates according to
a particular CSMA scheme running in the system. For example, node Ni in a
system running the pi-persistent CSMA operates as:

(1) If the channel is sensed idle, it transmits the packet with probability pi;
(2) If the channel is sensed busy, it waits until the channel goes idle (i.e. per-

sisting on transmitting) and then transmits the packet with probability pi.

1-Persistent Collision-Free CSMA Protocols 147

By slotting time into segments whose duration is exactly equal to the trans-
mission time of a single packet (assuming fixed-length packets), the channel
operates in a synchronized mode. Every node starts to transmit its packets only
at the beginning of a slot so that two or more conflicting packets overlap (if any)
completely rather than partially, providing an increased channel efficiency. This
is referred to as a slotted system. Otherwise, the system is called unslotted.

Unidirectional transmission property of optical buses inherently give some
nodes higher priorities than others because of their relative positions on the bus,
which may result in unfairness. This kind of unfairness can be solved by giving
different pi for different nodes. Slotted pi-persistent protocols were analyzed in
[10,11,12]. It was shown that, by deriving the steady-state probabilities of all
nodes using queuing theory, a set of pis can be computed to enforce fairness.
Theoretical analysis and simulation result of [10,11,12] show that theoretically
an unidirectional optical bus can provide fair service using pi-persistent CSMA
protocols.

The drawbacks of pi-persistent protocols include: (1) Obviously, any pi-
persistent protocol is not work-conserving; i.e. the channel may be idle with wait-
ing packets. (2) In addition, packets transmitting collision cannot be completely
avoided, which wastes channel bandwidth. (3) The responsiveness of pi-persistent
protocols is slow. To achieve desired performance, pis have to be computed be-
forehand for specific traffic pattern and/or service requirement. Even for a small
traffic change in one node, pis have to be recalculated and nodes have to be
notified of new pis. For dynamic traffic and/or service requirements, this pro-
cess is not only wasting more channel bandwidth, but also slow in response to
changes of network conditions. Thus, the theoretical performance of pi-persistent
protocols is unrealistic in practice.

3 System Model

The proposed work in this paper is based on the opportunistic hyperchannel
architecture which was introduced in [13] based on [14]. There are two types of
opportunistic hyperchannels, namely, fold connected opportunistic hyperchan-
nel and dual opportunistic hyperchannel. A fold connected opportunistic hyper-
channel shown in Figure 1(a) has a folded optical bus structure, providing full
connectivity. A dual opportunistic hyperchannel consists of two independent op-
portunistic hyperchannels, each being called a partially connected opportunis-
tic hyperchannel, in opposite directions in the form of Figure 1(b), providing
full connectivity. A partially connected opportunistic hyperchannel is shown in
Figure 1(b). For discussion purpose, we restrict our attention to the partially con-
nected opportunistic hyperchannel shown in Figure 1(b). This restriction does
not affect the applicability of our protocol to fold and dual hyperchannels. For
convenience, and without loss of generality, we simply call a partially connected
opportunistic hyperchannel an opportunistic hyperchannel.

In an (n + 1)-node opportunistic hyperchannel, as shown in Figure 1(b), the
nodes are labeled N0, N1, · · · , Nn, with N0 and Nn as the starting node and

148 J. Chen et al.

1

0

n−10

1 n−2

n−2

n−1

n0

1 n−2

1

0 n−1

n−2

n−1

.

(b)

N

DC state

DA state

(c)

NN N

S S S

N

S

.

(a)

N N NN

S S S S

Fig. 1. Opportunistic hyperchannel. (a) A folded opportunistic hyperchannel. (b) A
partially connected opportunistic hyperchannel. (c) Two states of the CA switch asso-
ciated with a node in an opportunistic hyperchannel.

end node, respectively. Node N0 and Nn can only transmit and receive packets,
respectively. Each intermediate node Nk can receive packets from the upstream
nodes and transmit packets to the downstream nodes by controlling its continue-
add (CA) switch Sk to be one of two states, DC state or DA state, according to its
traffic situation. When Sk is set to be in DC state, the signal from the upstream
nodes can drops a copy at node Nk and passes Sk simultaneously. When Sk

is set to be in DA state, it intercepts the signal from the upstream nodes and
transmits packets from local buffers of Nk without collision. The signal from the
upstream nodes passes the receiver and goes into the electrical buffer which node
Nk would process later.

4 1-Persistent Collision-Free CSMA Protocols

In what follows, we describe a simple 1-persistent collision-free fair CSMA
(CSMA/CF) protocol designed for an (n + 1)-node opportunistic hyperchannel.
In this protocol, each intermediate node Nk, 0 < k < n, maintains two queues
q0
k and qk

k . The packets from the upstream nodes of Nk are always dropped at
node Nk, some of which will be added to q0

k depending on the state of Sk. The
locally generated packets are stored in qk

k .
If there is no locally generated packet at qk

k , Sk remains in DC state. The first
locally generated packet at Nk will trigger Sk to be changed from DC state to
DA state. Whenever q0

k �= ∅ or qk
k �= ∅, a packet with the lowest timestamp will

be scheduled to be transmitted persistently. Thus, Sk remains to be in DA state
as long as q0

k �= ∅ or qk
k �= ∅. Sk goes back to DC state if and only if q0

k = ∅ and
qk
k = ∅.

Clearly, the opportunistic hyperchannel give rise to a class of collision-free
CSMA protocols that utilize the knowledge of packets received by intermedi-
ate nodes. To implement such a 1-persistent collision-free CSMA protocol, the
following two technical issues have to be addressed:

1-Persistent Collision-Free CSMA Protocols 149

– The opportunistic hyperchannel architecture introduces the overhead of
physically switching a 2:1 optical switch from DC state to DA state or from
DA state to DC state. The timing operation of the state change of a CA
switch will make a difference on mitigating the effect of this overhead over
the packets.

– Since each packet from the upstream nodes will be dropped at Nk, Nk needs
to determine which packets should go to q0

k to be transmitted to the down-
stream nodes.

In the remains of this section, we firstly introduce a mechanism for the timing
operation of the state change at a CA switch. We then present the procedure
for each node to determine whether the packet from a upstream node should
be buffered or not, followed by the implementation of 1-persistent collision-free
CSMA protocol at each node.

4.1 Timing Operation of the State Change

Suppose that it takes tg time to switch from one state to the other at a 2:1
optical switch. Let the transmission delay of a packet be T . With the advance
of the switching technology, tg can be expected to be much less than T . We
assume the propagation delay is negligible given the high transmission speed of
the light.

The timing operation of the state change for a CA switch works as follows.
At each node, a tg time latency, referred to as “guard time”, is inserted between
the transmission of two consecutive packets. Thus, the period of each time slot
will be T + tg. Suppose in a time slot i where the duration of time slot i is
[i(T + tg), (i + 1)(T + tg)), a packet from either q0

k or qk
k is transmitted, then the

transmission must have been finished by the time of (i + 1)T + i ∗ tg. If no more
packets in either queue, at the time period of [(i + 1)T + i ∗ tg, (i + 1)(T + tg)),
Sk will be switched from DA state to DC state. As we can see, a node will be
able to transmit a packet and also change its state in one time slot.

This approach divides each time slot into two portions, one portion for packet
transmission and one portion for the potential state change. During the time
portion of the state change, no data transmission is ongoing, thus it will not
cause any incomplete packet, which means less forwarding work is needed at the
intermediate nodes. Such an incomplete avoidance makes such an approach very
efficient when tg � T .

4.2 Queuing Decisions for Received Packets

The packets dropped at Nk include: (i) packets from Nk’s upstream nodes that
have passed Sk when Sk is in DC state. The destinations of these packets can
be the upstream nodes of Nk, Nk itself, or the downstream nodes of Nk. (ii)
packets from Nk’s upstream nodes that are stored in Nk when Sk is in DA
state. For these packets, some of them should be discarded, some of them should

150 J. Chen et al.

enter queue q0
k for later transmission, and some of them should be taken if the

destination of the packets is Nk.
With respect to a received packet p, at the end of the time slot, Nk will process

p according to the following procedure:

– case 1: if Sk is in DC state, discard it; otherwise,
– case 2: if the destination of p is an upstream node of Nk, discard it; otherwise,
– case 3: if the destination of p is Nk, take it; otherwise,
– case 4: put p at the end of q0

k.

4.3 Implementation of 1-Persistent Collision Free Protocol

In this protocol, we assume that all nodes share the same system clock and
each packet is associated with two attributes, d(p) and tstamp(p), which are the
destination of p and the system time at which p is generated. Let pi,k be the
packet generated at Nk at time slot i.

The CSMA/CF protocol is described by a set of concurrent processes, with
CSMA/CF Generatek, CSMA/CF Receivek and CSMA/CF Sendk residing
in Nk, 0 < k < n; it is assumed that node N0 transmits a packet whenever it is
available and node Nn receives any packet it senses. Procedure GENERATEk

returns a packet p generated at node Nk where a null value is returned if no
packet is generated at Nk. Suppose that the current system time can be found
out by executing a procedure TIME(). Procedure RECEIV Ek returns a packet
p if p arrives at Nk; otherwise, a null value is returned. It stores p into q0

k only if p
needs to be forwarded. Procedure DEST IDk(p), which returns the destination
node ID of packet p, is used to determine whether or not p needs to be forwarded.
Procedures ENQUEUE(p, qj

k) is used to store packet p into qj
k and procedure

DEQUEUE(qj
k) returns a packet from qj

k. Procedure TIMES(qj
k) returns the

tstamp value of the first packet in qj
k.

Processes CSMA/CF Generatek, CSMA/CF Receivek, and CSMA/CF Sendk

for Nk are given as follows:

process CSMA/CF Generatek

repeat
p := GENERATEk;
if p �= null then

tstamp(p) := TIME();
ENQUEUE(p, qk

k);
if Sk is in DC state then
set Sk to DA state during next packet gap;

end-repeat

process CSMA/CF Receivek

repeat
p := RECEIV Ek;
if p �= null and DEST IDk(p) > k and Sk is in DA state
then ENQUEUE(p, q0

k);
end-repeat

1-Persistent Collision-Free CSMA Protocols 151

process CSMA/CF Sendk

repeat
while q0

k �= ∅ or queuek
k �= ∅ do

if q0
k �= ∅ and queuek

k �= ∅ then
t0k := TIMES(q0

k);
tk
k := TIMES(qk

k);

if t0k ≤ tk
k then j := 0 else j := k;

else if q0
k �= ∅ then j := 0 else j := k;

p := DEQUEUE(qj
k);

transmit packet p;
end-while
set Sk to DC state during next packet gap;

end-repeat

As we see, the packets in qk
k are always inherently sorted according to the

increased timestamp. However, the packets in q0
k might not be sorted, e.g., the

packets with higher timestamp are in front of the packets with lower timestamp
in q0

k. This can be explained as follows. Suppose that a packet pi,k is generated
at Nk in time slot i. Sk is changed from DC state to DA state during the time
slot i. At the end of the time slot i, qk

k must be {pi,k} and q0
k must be ∅. Nk will

send pik out to the downstream node at time slot i + 1 even if there are some
packets with lower timestamp at the queues of Nk’s upstream nodes. pik might
be queued at one of its downstream nodes and the packets with lower timestamp
may join the same queue before pik is sent out.

Given the above property, in order to achieve better fairness, we need to sort
the packets in q0

k for 1 ≤ k ≤ n in the non-decreasing timestamp order. With
the sorted packets in q0

k, node Nk only needs to compare the timestamp of the
two packets at the heads of q0

k and qk
k and transmits the packet with the lower

timestamp at each time slot. The packet transmitted at Nk at each time slot
must have the lowest timestamp among all packets available at Nk’s q0

k and qk
k . A

min-heap queue for q0
k and first-in-first-out (FIFO) queue for qk

k can well achieve
the fairness property of CSMA/CF. If a min-heap queue is applied to q0

k, the time
complexity of both CSMA/CF Receivek and CSMA/CF Sendk is O(log mk)
where mk is the number of available packets at q0

k. The CSMA/CF protocol
using the min-heap queue for q0

k (1 ≤ k ≤ n) is referred to as CSMA/CF/1
in this paper. At each time slot, tg time portion can be used to maintain the
min-heap queue. However, if the queue size is too long, it might not be feasible
to maintain the min-heap queue within tg.

In this paper, we also propose an alternative CSMA/CF protocol where both
q0
k and qk

k are FIFO queues, referred to as CSMA/CF/2. Though CSMA/CF/2
can not achieve as good fairness as CSMA/CF/1, the time complexity of both
CSMA/CF Receivek and CSMA/CF Sendk is O(1) per packet. Through the
simulation, we can see that fairness that CSMA/CF/2 can achieve is quite close
to that of CSMA/CF/1.

152 J. Chen et al.

5 Performance Analysis

In this section, we analyze the performance of CSMA/CF/1 by deriving a worst
case upper bound for packet delays in comparison with a fair packet scheduler.
We only consider the (n+1)-node partially connected opportunistic hyperchannel
shown in Figure 1(b), since the delay bound obtained also applies to the n-node
fully connected opportunistic hyperchannel of Figure 1(a). The rightmost node
Nn is called the end node of the bus. We assume that packets have the same
size. Packets are transmitted in time slots.

Assume the operation starting time of an (n + 1)-node opportunistic hyper-
channel to be 0. We say that packet pi′,k′ < pi,k if and only if i′ < i or i′ = i and
k′ > k. Clearly, there is a total order on the packets generated in the nodes Nj ,
0 ≤ j ≤ n − 1, of an (n + 1)-node opportunistic hyperchannel. Define a packet
scheduling algorithm General Round Robin (GRR) which enforces packet pi′,k′

reaching the end node before packet pi,k if and only if pi′,k′ < pi,k. Conceptually,
GRR transmits packets to the end node in rounds, with each round consisting
of packets generated at the same time, in the increasing order of packet gener-
ating times, and transmits packets in the same round in the decreasing order
of node indices. Clearly, GRR is a fair algorithm which cannot be implemented
distributively without knowing the arriving order of packets. We analyze the
performance of CSMA/CF/1 by comparing them with algorithm GRR.

Let tGRR(p), tCSMA/CF/1(p) be the time at which packet p reaches the end
node in an (n+1)-node opportunistic hyperchannel according to the GRR algo-
rithm and CSMA/CF/1 protocol respectively. We assume the signal propagation
delay over fiber to be 0. Define the delay of packet p using CSMA/CF/1 with
respect to GRR as D1

n(p) = tCSMA/CF/1(p)− tGRR(p). Note that D1
n(p) can be

negative, when p reaches the end node using CSMA/CF/1 earlier than the time
it reaches the end node using GRR. Define

D1∗
n = max

all packets p
{D1

n(p)},

which is the worst case delay upper bound for CSMA/CF/1 protocol compared
with the GRR algorithm.

Theorem 1. For CSMA/CF/1, D1∗
n ≤ (n− 1) · (T + tg).

Proof. Consider a packet pi,k where 1 ≤ k ≤ n. Let Ai,k be the set of packets
that are in the system when pi,k is generated with p′ < pi,k for p′ ∈ Ai,k.
Given the work-conserving property of CSMA/CF protocol, there must also be
|Ai,k| packets in the system when pi,k is generated no matter which scheduling
algorithm is applied. Clearly, in the GRR algorithm, packet pi,k will have a delay
of |Ai,k|(T + tg).

Suppose that packet pi,k reaches the destination at time slot t under CSMA/
CF/1. Because the system will keep busy as long as there are packets in the
system, there will be one packet reaching destination at any time period i′ for
i′ = i+1, . . . , t. Among the packets arrived at the destination during the period

1-Persistent Collision-Free CSMA Protocols 153

from time slot i + 1 to time slot t − 1, if there is a packet pi′,k′ with higher
timestamp than pi,k, then we say pi,k has an extra delay caused by pi′,k′ .

Now we claim that the total extra delay incurred to pi,k cannot be more than
n−k. Such a claim implies that pi,k will not have more delays of (n−k)(T + tg)
in CSMA/CF than it has in GRR.

Since the only packets which may cause extra delay to pi,k are the packets
from Nk’s downstream nodes, if we can prove that at most one packet with the
lower timestamp can be inserted in front of pi,k at each downstream node of Nk

during the time period from time slot i + 1 to time slot t− 1, our claims hold.
Consider a node Nj with j ≥ k, which is a downstream node of Nk.

– Case 1. Suppose node Nj is in DA state at time slot i. Then node Nj cannot
be switched to DC state before pi,k passes node Nj because q0

j will not be ∅
as long as there are packets in the queues of Nj ’s upstream nodes. In such
a case, any packet pi′,j with i′ ≥ i, i.e., with lower priority than pi,k, will be
first inserted into the local queue at node Nj . Consequently, pi′,j cannot be
sent out from node Nj until pi,k passes node Nj . In other words, pi′,j will
not cause any extra delay to pi,k

– Case 2. Suppose that node Nj is in DC state at time slot i. Then it keeps in
DC state and does not block any packet until a packet pi′,j is generated at
time i′ ≥ i.
• Case 2.1. If pi′,j is generated after pi,k passes node Nj, then pi′,j will not

cause any extra delay to pi,k.
• Case 2.2. If pi′,j is generated before pi,k passes node Nj , then pi′,j causes

node Nj to be switched from DC state to DA state, and may reach
destination earlier than pi,k. In such a case, pi′,j causes one extra delay
to pj,k. After this, node Nj cannot be switched to DC state before pi,k

passes node j, an analysis similar to Case 1 as we have conducted.

Summarizing the above cases, we know that at most one extra delay will be
caused to pi,k at any node Nj for j ≥ k. Thus, any packet generated at Nk will
experience at most (n− k)(T + tg) more delay in CSMA/CF/1 protocol than in
GRR algorithm. The packets generated at N1 may experience (n − 1)(T + tg)
more delay in CSMA/CF/1 protocol than in GRR algorithm. This completes
the proof of Theorem 1.

6 Simulation

We conducted simulations to compare the performance of 1-persistent CSMA/CF
protocols running on anopportunistic hyperchannelwith pi-persistentCSMA/CD
protocol andpriority-basedCSMAprotocol running ona traditional unidirectional
optical bus.

The hyperchannel architecture we simulated is the partially connected hyper-
channel shown in Figure 1(b) with 11 nodes. The destinations of all packets are
uniformly distributed on all its downstream nodes. For example, the destinations
of packets generated at node Nk is uniformly distributed in [k +1, n−1]. Such a

154 J. Chen et al.

setting is based on the consideration of constructing the practice-case scenarios
of the 11-node architecture of Figure 1(b).

The packet arrival process (i.e. packet generating process) at node Nk is as-
sumed to be a Poisson process with parameter λk, and system load is uniformly
distributed among all nodes, which means λk = λj , 0 ≤ j, k < n. Then, system
load can be identified by λ =

∑n−1
i=0 λi. We assume fixed packet length in the sim-

ulation. We compare the following three performance metrics: (1) throughput,
(2) global average delay, and (3)average delay at each node. A higher throughput
or a lower global average delay indicates that the system is more work-conserving.
The average delay at each node can be used as the measurements of fairness.

6.1 Throughput and Global Average Delay

In the opportunistic hyperchannel, a packet will be dropped at the first down-
stream node which is in DA state after it passes its destination instead of occupy-
ing the whole optical bus. Thus, the connections without any overlap can trans-
mit their packets simultaneously without confliction. Therefore, the throughput
achieved in the opportunistic hyperchannel with 1-persistent collision free proto-
col can be larger than the bandwidth of a wavelength. Since the medium is occu-
pied with waiting packets in the system while priority-based CSMA protocol is
the scheduler, the throughput is equal to the bandwidth of a wavelength, which is
100% showed as Figure 2(a). pi-persistent achieve lower throughput than that of
priority-based CSMA protocol for non-work conserving property. Figure 2(a) ver-
ifies this property. The global average delay of 1-persistent CSMA/CF protocols
is the minimum as shown in Figure 2(b), which is consistent with the throughput.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
80

85

90

95

100

105

110

115

120

125

T
hr

ou
gh

pu
t

System Load

p
i
−per CSMA

1−per CSMA/CF/1
1−per CSMA/CF/2
priority−based CSMA

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

G
lo

ba
l D

el
ay

 M
ea

n

System Load

p
i
−per CSMA

1−per CSMA/CF/1
1−per CSMA/CF/2
priority−based CSMA

(b)

Fig. 2. (a)throughput vs. system load; (b) global average delay vs. system load

Figures 2(a) and 2(b) also show that the curves of 1-persistent CSMA/CF/1
and CSMA/CF/2 protocols almost completely overlap. This indicates that, for
practical purpose, CSMA/CF/2 is a better choice than CSMA/CF/1 because of
its O(1) time complexity.

1-Persistent Collision-Free CSMA Protocols 155

0 1 2 3 4 5 6 7 8 9
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

D
el

ay
 M

ea
n

Node Index

p
i
−per CSMA

1−per CSMA/CF/1
1−per CSMA/CF/2
priority−based CSMA

System Load = 29.28%

(a)

0 1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

9

10

11

D
el

ay
 M

ea
n

Node Index

p
i
−per CSMA

1−per CSMA/CF/1
1−per CSMA/CF/2
priority−based CSMA

System Load =77.08%

(b)

Fig. 3. (a) Average delay vs. node index when system load=29.28%; (b) average delay
vs. node index and system load=77.08%

6.2 Average Packet Delay

For the priority-based CSMA protocol, the upstream nodes have higher pri-
ority, thus the average delay at the upstream nodes is lower than that of the
downstream nodes. As a result, the average delay curve in Figure 3 for priority-
based CSMA protocol is a increasing curve.

For pi-persistent CSMA/CD protocol, the average delay at each node is similar
if pi is correctly calculated, which means if the real traffic demand matches the
estimated traffic demand. As shown in Figure 3(a), when the system load is low,
the curve of the average delay for pi-persistent CSMA/CD protocol is quite flat.
However, when the system load is high, as shown in Figure 3(b), the difference of
the average delay among nodes can be dramatic, which means that the fairness
of pi-persistent protocol is hard to achieve if the real traffic demand does not
match the estimated traffic demand.

For 1-persistent CSMA/CF protocols, the downstream nodes intend to have
lower average delay since they can block the packets from the upstream nodes
and transmit their locally generated packets each time when they switch from
DC state to DA state. Thus, the curves of the average delay for 1-persistent
CSMA/CF protocols are decreasing curves.

In general, the average delay at each node in 1-persistent CSMA/CF protocols
is much less than that in pi-persistent CSMA/CD protocol.

7 Conclusion

We introduced 1-persistent CSMA/CF protocols for opportunistic hyperchannel
in this paper. 1-persistent CSMA/CF protocols can achieve both fair service
and efficiency compared with the pi-persistent CSMA protocol and priority-
based CSMA protocol running on a traditional unidirectional optical bus. We
believe that the features of opportunistic hyperchannels can be used to design
more high-performance medium access control protocols.

156 J. Chen et al.

References

1. Zheng, S.Q., Gumaste, A.: SMART: an Optical Infrastructure for Future Internet.
In: Proceedings of the 3rd International Conference on Broadband Communica-
tions, Networks, and Systems (Broadnets 2006) (2006)

2. Gumaste, A., Chlamtac, I.: Light-Trails: a Novel Conceptual Framework for Con-
ducting Optical Communications. In: Proc. of IEEE Workshop on High Perfor-
mance Switching and Routing (HPSR) (June 2003)

3. Chen, J., Zheng, S.Q., Gumaste, A.: QoS Assuring Access Control Protocols for
Hyperchannels in SMART Network. In: The 18th IASTED International Confer-
ence on PDCS (November 2006)

4. Tobagi, F., Borgonovo, F., Fratta, L.: Expressnet: a High-Performance Integrated-
Services Local Area Network. IEEE Journal on Selected Areas in Communica-
tions 1, 898–913 (1983)

5. Tobagi, F., Fine, M.: Performance of Unidirectional Broadcast Local Area Net-
works: Expressnet and Fasnet. IEEE Journal on Selected Areas in Communica-
tions 1, 913–926 (1983)

6. Tseng, C.-W., Chen, B.-U.: D-Net, a New Scheme for High Data Rate Optical Local
Area Networks. IEEE Journal on Selected Areas in Communications 1, 493–499
(1983)

7. Abeysundara, B.W., Kamal, A.E.: Z-Net: a Dual Bus Fiber-Optic LAN Using
Active and Passive Switchers. INFOCOM 1, 19–27 (1989)

8. Kamal, A.E., Abeysundara, B.W.: X-Net: a Dual Bus Fiber-Optic LAN Using
Active Switches. ACM SIGCOMM Computer Communication Review 19, 72–82
(1989)

9. Maxemchuk, N.F.: Twelve Random Access Strategies for Fiber Optic Networks.
IEEE Trans. Commun. COM-36, 942–950 (1988)

10. Mukherjee, B., Meditch, J.S.: The pi-persistent Protocol for Unidirectional Broad-
cast Bus Networks. IEEE Trans. Commun. COM-36, 1277–1286 (1988)

11. Mukherjee, B.: Performance of a Dual-Bus Unidirectional Broadcast Network Op-
erating under Probabilistic Scheduling Strategy. In: Proceedings of SIGMETRICS
1989, vol. 17(1) (1989)

12. Mukherjee, B.: On the Infinite Buffer Model and the Implementation Aspects of
the pi-persistent Protocol for Unidirectional Broadcast Bus Networks. In: IEEE
International Conference on Commun., June 1988, vol. 1, pp. 273–277 (1988)

13. Chen, J., Yu, H., Wang, J., Zheng, S.Q.: Opportunistic Optical Hyperchannel and
Its Distributed QoS Assuring Access Control, Technical Report UTDCS-29-07 (Au-
gust 2007), Submitted to Journal Publication

14. Gumaste, A., Zheng, S.Q.: Light-Frames - Pragmatic Framework for Optical Packet
Transport: Extending Ethernet LANs to Optical Networks. IEEE/OSA Journal of
Lightwave Technology 24(10), 3598–3615 (2006)

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 157–168, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Optimization of Context Sharing for
Self-adaptive Mobile Applications

Nearchos Paspallis and George A. Papadopoulos

Department of Computer Science, University of Cyprus
P.O. Box 20537, Postal Code 1678 Nicosia, Cyprus

{nearchos,george}@cs.ucy.ac.cy

Abstract. Because of the high potential of mobile and pervasive computing
systems, there is an ongoing trend in developing applications exhibiting context
awareness and adaptive behavior. While context awareness guarantees that the
applications are aware of both their context and their own state, dynamic adap-
tivity enables them to react on their knowledge about it and optimize their of-
fered services. However, because in pervasive computing environments there is
also a need for enabling arbitrary synergies, such a behavior also requires ap-
propriate algorithms implementing the adaptation logic required to reason on
the sensed context and dynamically decide on the most appropriate adaptations.
This paper discusses how utility function-based approaches can use context-
awareness for that and, additionally, it shows how the decision-making process
is improved with respect to both performance and resource consumption by
using a more intelligent approach.

Keywords: Self-adaptive, Context-aware, Optimization, Mobile computing.

1 Introduction

Today, one can observe an ever increasing trend in the use of mobile systems and
applications which are used to assist us with our everyday tasks. As these applications
become more ubiquitous, developers are faced with both opportunity and challenge.
Adaptive, mobile applications are designed to constantly adapt to the contextual
conditions in an autonomous way, with the aim of optimizing the quality of their
service. The complexity of self-adaptive software though, renders their development
significantly more difficult. As Paul Horn has quoted in IBM’s manifesto of
autonomic computing [1], tackling the development complexity, which is inherent in
modern autonomic systems, is the next grand challenge for the IT industry.

When aiming complicated, autonomous and adaptive software, one of the most
important hurdles is to provide suitable software engineering methods, models and
tools, to ease the development effort. Current approaches aim to achieve this by using
architectural [2] and modeling tools [3]. Other approaches propose development
methodologies such as the separation of the functional from the extra-functional
concerns in the design and development of adaptive, mobile applications [4].

158 N. Paspallis and G.A. Papadopoulos

Abstracting adaptive, mobile applications with compositions of individual and re-
usable components [5] offers many benefits, including the opportunity to delegate
part of the adaptation responsibility to a different layer (middleware). This paper
discusses the proactive and reactive approaches for sharing context information with
the purpose of achieving distributed adaptation reasoning. Furthermore, it proposes an
optimization which is shown to significantly improve distributed context-awareness in
terms of number of needed message exchanges.

The rest of this paper is organized as follows: Section 2 introduces the basic terms
of context-awareness and adaptation reasoning. Then, Section 3 presents a basic ap-
proach to adaptation reasoning and proposes an optimization, aiming at minimizing
the number of context change messages to be communicated. Then, Section 4 de-
scribes a case study scenario and validates some of the approaches proposed in the
previous section, and Section 5 discusses related work. Finally, the paper concludes
with Section 6 which presents the conclusions and points to our plans for future work.

2 Adaptation Enabling Middleware

Often, applications featuring context-awareness and adaptivity, exhibit a common
pattern: context changes are monitored and evaluated against the possible adaptation
options so that the optimal choice is dynamically selected. This pattern naturally leads
to the attempt of encapsulating and automating much of these tasks, in the form of
appropriate middleware tools. The Mobility and Adaptation-enabling Middleware
(MADAM) project [6] has aimed at providing software developers with reusable
models and tools, assisting them in the design and implementation of adaptive, mobile
applications. To facilitate the reusability of adaptation strategies, a middleware layer
was proposed which can be used to encapsulate context monitoring, adaptation rea-
soning logic and reconfiguration tasks. Building on MADAM’s legacy, the Self-
Adapting Applications for Mobile Users in Ubiquitous Computing Environments
(MUSIC) project [7] envisions to improve the results of MADAM and also to extend
the application domain from mobile to ubiquitous computing.

As illustrated in Fig. 1, the middleware layer can serve by automating three basic
functions: First, it monitors the context for changes and notifies the adaptation logic
module when a relevant change occurs. Second, it reasons on the context changes and
makes decisions about which application variant should be selected (different application
variants refer to different component compositions providing the same functionality with
different extra-functional properties). This step typically includes the dynamic formation
of all possible application variants, as they are defined by corresponding component
metadata. Finally, when an adaptation is decided, the configuration management instructs
the underlying component framework to apply it (i.e. it reconfigures the application by
setting adjustable parameters and by binding or unbinding the involved components and
services).

The adaptation reasoning refers to the process where a set of possible variants are
first formulated, based on the composition plans provided by the application [2], and
then evaluated with the aim of selecting the adaptation which optimizes the utility for
the given context. This process is triggered by changes to the context, which in this
case includes the user context (preferences, activities, state, mood, etc), the computing

 An Optimization of Context Sharing for Self-adaptive Mobile Applications 159

Fig. 1. High-level structure of a typical context-aware, adaptation-enabling middleware

context (devices, networks, UI options and capabilities, available composition plans
and services, etc) and the environment (location, weather, light and noise, etc).

The adaptations are performed at the application layer, where different components
and services can be interchangeably replaced (or [re]connect to each other in different
configurations) in order to form different variants of the application. Although these
variants are assumed to be characterized by different extra-functional properties, they
are nevertheless assumed to offer the same functional service. This results in different
application variants, which can offer different levels of Quality of Service (QoS) de-
pending on their contextual conditions. To enable self-adaptation, these variants are
then evaluated (e.g. using utility functions) and the optimal one is selected (for an
example see [8]).

Assuming a centralized system, the decisions are taken locally (i.e. no networking
interactions are required), and the decided application variants are limited to non-
distributed ones. However, while the lack of networking requirements improves the
system’s robustness, it also prevents it from exploiting the opportunities arising when
distributed compositions are available. More particularly it misses the opportunity of
supporting distributed compositions, which allow hosts to better exploit resources and
services offered by other hosts. This is particularly important in mobile and pervasive
computing environments where frequent context changes and scarce resources render
the exploitation of distributed resources extremely useful. For instance, a mobile de-
vice is enabled to delegate processor-intensive tasks (such as text-to-speech) to ap-
propriate server nodes, thus better utilizing the globally available resources.

This paper discusses a basic approach which allows for distributed decision-
making and distributed compositions (i.e. applications comprising of components
residing on distributed nodes). The approach builds on the basic architectural-based
model for runtime adaptability, as it is described by Floch et al [2].

2.1 Problem Description and Requirements

In its simplest form, a centralized architecture can be designed so that it supports the
adaptation of a single, non-distributed application. The composition plans specify a
set of possible variants, which are all evaluated whenever a relevant context change is
sensed. A natural evolution of this approach is the support of composition plans
where some of the components are allowed to be distributed. This implies the defini-
tion and use of distributed composition plans, i.e. plans defining compositions where
some of the components are possibly deployed on distributed nodes.

160 N. Paspallis and G.A. Papadopoulos

Furthermore, an additional relaxation of the original form refers to the case where
the distributed variants are formed and decided on a single central node or they are
formed and decided in a distributed way. The latter approach is of course significantly
more complex as it requires mechanisms to enable the nodes to reach trusted and fair
agreements. For the latter, it is assumed that the common point of reference is the
utility, as it is perceived by the end user [8].

In this context, the dynamic adaptation reasoning problem can be defined as the re-
quirement for models and algorithms which can be used for the dynamic selection of
the most suitable variant. In this case, the suitability of a variant refers to its fitness to
the user needs, as it is measured by the utility offered to the end user. The next section
discusses a straightforward approach for enabling adaptation reasoning and an opti-
mization which minimizes the number of messages required to be communicated for
distributed context sharing.

3 Adaptation Reasoning

We consider the case where adaptive, component-based applications are defined as
collections of software components which can be configured to derive a number of
variants according to a set of composition plans. These components are defined as
self-containing modules of code, which can communicate with each other through a
set of ports. In practice, many systems use computational reflection to reason and
possibly alter their own behavior, as well as component-orientation to “allow inde-
pendent deployment, and composition by third parties” [5].

The composition plans are defined at design time and they are used to dynamically
construct different variants of the application. Individual variants are designed so that
they offer an advantage (such as better resource utilization) compared to the others in
varying context. Naturally, each variant is designed with the aim of maximizing the
utility of the application for at least a subset of the context space.

In autonomic systems, the possible approaches for making adaptation reasoning are
classified to action-based, goal-based and utility function-based [10]. In this work we
consider the use of utility functions for two reasons: First they facilitate scalability
and, second, they support dynamically available, arbitrary components.

Utility functions are simple computational artifacts which are used to compute the
utility of an application variant: i.e. a quantifiable scalar value, reflecting the utility
perceived by the end user. In this respect, the overall objective of the middleware can
be defined as “the continuous evaluation of all possible variants with the aim of al-
ways selecting the one which maximizes the utility offered to the end user”.

 Assuming there is only a single application which is managed by the middleware
the utility function can be implemented as a function which maps application variants,
context conditions and user preferences to scalar values, as depicted in the following:

ƒ(p,c): (p1, p2, …, pN) ⋅ (c1, …, cM) [0,1] (1)

In this formula, the “p1, …, pN” values correspond to the available variants, and the
“c1, …, cM” values correspond to the possible points in the context space (this includes
the user preferences, as part of the user context). In other words, the utility function is
used to map each combination of a composition plan and context condition to a scalar

 An Optimization of Context Sharing for Self-adaptive Mobile Applications 161

number (typically in the range of [0, 1]). As this definition indicates, all the parameter
types are subject to change. Thus, the aim is to always select a composition which
maximizes the utility. The evaluation process is triggered whenever any of the argu-
ments (i.e. context and available variants) changes.

Although it is assumed that the computed scalar utility reflects the benefit as that is
perceived by the user, there are currently no general methods which can guarantee the
precision of such an assignment. Rather, approaches such as the one used in the
MADAM project [6] simply encourage the assignment of utilities to components and
composition plans in an empirical manner (i.e. using the developers’ intuition). When
the application is sufficiently complex, there is no straight-forward method or ap-
proach which can guarantee that there is a perfect (or even close) match between the
computed utility value and the actual user desires. Nevertheless, it is argued that con-
structing utility functions in an empirical manner, in combination with experimental
evaluation, can result in reasonable solutions with moderate effort.

Finally, as it is evident from the definition of the utility functions, the performance
of the selection process is inversely proportional to the number of possible variants.
Naturally, the adaptation reasoning becomes less efficient as the number of composi-
tion plans increases. This becomes more evident with larger, distributed applications
featuring large numbers of possible variants, especially as this number typically
increases exponentially with the number of used components.

3.1 Developing Applications with Compositional Plans

In order to be able to define applications in a dynamic, compositional way, a recursive
approach is defined as follows: The primary modeling artifacts defined, are the com-
ponent types and the component implementations. A component type can be realized
by either a component implementation, or by a well-defined composition of additional
component types (i.e. a composite component type). The latter enables the dynamic
formation of alternative compositions in a recursive manner (in this case the recursion
ends when all the component types have been assigned to either a composite compo-
nent type or to an actual component implementation). The application is defined by an
application type, which is itself a component type.

Additionally, the composition plans are predefined (i.e. at development time rather
than at runtime). For instance, the model which is defined in [3] specifies how to
construct different composition plans (and thus variants) for an application, and thus it
aims at the developers rather than the runtime system. The latter uses the composition
plans to dynamically compose the possible variants during the evaluation phase.

The applications are also defined in a recursive manner: for each step, of which a
new layer is defined, specifying how the abstract component type is implemented.
Always, the first layer is a layer with a single composite component type, abstracting
the whole application. Depending on whether the application interacts with other
applications or not, the first layer includes a composition plan with possibly some
input (dependency) and some output (offered) services (or ports in component-
orientation terminology). Subsequent layers expose further details of the composition
plan by specifying additional component implementations and component types. The
recursion ends when a layer is reached where all component types are fully resolved
with component implementations.

162 N. Paspallis and G.A. Papadopoulos

Evidently, variability is enabled by allowing the use of various alternatives for par-
ticular component types. Each such alternative adds to the total number of possible
variants. During the adaptation process, all possible variants are computed with the
purpose of being evaluated.

3.2 Adaptation Reasoning

A centralized adaptation reasoning approach implies that the decisions are taken lo-
cally, and that no negotiation with other peers is required [11]. On the other hand, a
distributed approach allows coordination between the collaborating peers, thus allow-
ing the proposition and agreement of mutually accepted decisions.

A typical centralized implementation, triggered by context changes, is expressed
by the following pseudo-code:

1. Detect a relevant context change

2. For all application variants (including distributed
ones), compute the utility value for the new context

3. If the optimal variant is different from the current
one, then adapt (reconfigure the application)

First, the adaptation reasoning is triggered by a relevant context change event. In
this case, the relevance is computed by analyzing the utility functions of the deployed
applications and extracting the context types which affect their outcome. The next
step simply iterates through all possible variants and computes their utility value. The
last step evaluates the computed values and selects the variant which maximizes the
utility. If that variant is different from the one already selected, then an adaptation
occurs by applying the new, optimal variant. Although not shown in this algorithm,
another optimization would be to evaluate how much does the newly selected variant
improves on the current one. If the margin is too small, then it is usually better to skip
the adaptation, as it typically incurs additional overhead cost (i.e. for reconfiguration).
Ideally, the exact cost of each prospective adaptation should be taken into account
when selecting on the reaction to a context change. However, when distributed con-
text sharing is considered, the context change events can be distributed, which implies
a higher cost for each message in terms of resources.

We assume an approach where the adaptation managers directly consult their cor-
responding context managers (instead of their remote adaptation manager peers),
which subsequently provide them with access to the information that is required to
assess all the possible application variants, including the distributed ones. In this way,
the best variant can be efficiently selected and applied. In [16], two main strategies
were discussed for optimizing the communication between the distributed devices:
First, a proactive strategy which aims at communicating as much information as soon
as it is available. In practice, with this strategy the nodes are always aware of as much
context information as possible, which as a result minimizes the response time at the
cost of increased messages communications carrying the required context updates.
Alternatively, a reactive strategy aims at minimizing the number of communicated
messages at the cost of slower reaction time. This strategy activates the adaptation
reasoning process only when a context change is sensed, which subsequently triggers
the exchange of all relevant context changes from the participating peers. This results

 An Optimization of Context Sharing for Self-adaptive Mobile Applications 163

in less message communications of context events at the cost of increased response
time. Hybrid approaches are also possible, one of which is presented in this paper
with the purpose of achieving both minimal communication of messages and quick
response times.

3.3 Optimizing the Adaptation Reasoning through Context Management

As it was argued in the previous subsections, adaptation reasoning can be solely based
on offering component types and assigning a utility value to them (which on the client
side appears as cost). Thus, practically, the distributed aspect of adaptation reasoning
can be implemented exclusively through the use of appropriate context distribution
mechanisms, facilitating the exchange of needed context data among the collaborating
nodes. This subsection discusses an approach for optimizing distributed adaptation
reasoning in the form of minimizing the number of messages required to be
exchanged as a result of context change events.

Typically, the context management systems inform their peers about the subset of
context data they are interested in, which as a result triggers a distributed context
change event whenever a relevant change is detected. For example, if node A is inter-
ested in context elements “c1, …, cP”, which are not locally available but are offered
by a peer node B, then node A can simply register for it. For example, this would
occur if node A had no local sensors available for that particular context type, while
some of its applications depend on it [9].

Naturally, the straight-forward approach includes node A sending an update mes-
sage to node B every time any context change occurs to the registered context
elements. However, this would be unnecessary, as not all context changes have a
potential of causing an adaptation. Assuming that the two nodes share a copy of the
relevant utility functions, then a natural optimization would be for node A to ask node
B to further process context changes, and filter out any context change messages that
are unlikely to cause an adaptation, before communicating them to A.

Of course, this also implies that node B will go through the same evaluation proc-
ess for all possible variants as node A would, which as described earlier can be a quite
heavy process, especially for a mobile device. However, it is argued that this process
can still offer significant benefits with regards to resource usage. Assuming that the
serving node is sufficiently powerful, it is expected that the gain of minimizing the
communicated context messages dominates the cost of processing and filtering
context change events.

4 Case Study Example and Experimental Evaluation

As a means of better illustrating the use of the optimization approach described in
Section 3.3, this section describes a case study example and also provides an evalua-
tion which arguably validates its potential. The gathered results are based on simula-
tions and aim at identifying and measuring the improvements that could result from
the application of the proposed approaches. Further details such as the actual over-
head incurred when making a decision is not discussed, but nevertheless the primary

164 N. Paspallis and G.A. Papadopoulos

objective of this evaluation is to illustrate that performance can be improved by show-
ing that the number of required context coordination messages is reduced.

In this respect, we have revisited the scenario discussed in [11], which describes an
application used by onsite workers for assisting them into performing their everyday
tasks. This application offers three primary modes of operation: Visual UI interaction,
Audio UI interaction with local Text-to-Speech (TTS) and Audio UI interaction with
remote TTS (illustrated in Fig. 2). Each of these modes is optimized for offering the
best quality to the user under different context conditions. For the purposes of evalu-
ating the context and selecting the optimal mode, the following property predictors
and utility function have also been defined, as illustrated in Fig. 3.

Fig. 2. The compositional architecture of the case study scenario

The composition of different variants is achieved through the exploitation of the
offered component types and component implementations, as shown in Fig. 2 and
discussed in Section 3.1 and Section 3.2. This figure illustrates the composition of a
simple application. At the highest abstraction layer, an application consists of a single
component type, which in this case is named Application. This component type is
composite, and thus describes its architectural composition as the simple binding of
two component types: Main and UI. The first is assumed to be an atomic component
implementing the main application’s logic, while the latter is assumed to be a compo-
nent providing UI functionality. Although not depicted in this figure, the main com-
ponent type is provided by a component implementation. The UI component type,
however, is further decomposed in three possible variants: The first one is provided
by a single atomic implementation, namely the Visual UI. The second and third are
equivalent in terms of architecture (an Audio UI component type bound to a Text-to-
Speech or TTS component type), but differ in their deployment plan as in one case the
TTS component type is deployed locally, while in the other case remotely. Subsequent
layers specify that the Audio UI and the TTS component types are provided as single,
atomic component implementations (not shown in Fig. 2).

Given this composition plan, a utility function was also defined, along with a set of
property predictors, which are used to dynamically evaluate the utility value for each
possible variant, and for specific context values. In this case, we consider three simple
context types only: bandwidth which refers to the available network bandwidth (as a

 An Optimization of Context Sharing for Self-adaptive Mobile Applications 165

percentage), response which corresponds to the user’s need for quick response, and
hands-free which corresponds to the user’s need for hands-free operation. The band-
width and response context properties are constrained to numeric values in the range
[0, 100], and the hands-free property is constrained to false or true values only. The
exact configuration of the property values and the property predictors for each of the
three variants is depicted in Fig. 3.

Fig. 3. The left side illustrates the application’s dependence on the response and hands-free
properties. It also describes the definition of the utility function. The right side, illustrates the
three possibilities for implementing the UI role, which comprise the three primary modes of
operation for the application. The utility of the latter is defined using a property predictor.

Given these metadata, and a set of context property values, one can compute the
utility of any variant. However, not all context changes can affect the selected variant,
i.e. a transition in the value of a context property does not imply that an adaptation
will be triggered. It is exactly this fact that it is exploited in the optimization approach
defined in Section 3.3. In order to validate its usefulness, we used this example and
computed the ratio of context changes that could potentially trigger an adaptation.

Table 1 shows the results of our evaluation, which was performed as follows: First,
different domains for the values of each of the three context properties were defined:
the bandwidth, the response and the hands-free. In this case, the bandwidth value-set
of (0:10:40) implies that the bandwidth is simulated with all values between 0 and 40
with a step of 10. Next, for each of these context combinations, we computed the
number of different context settings that favor the use of each of the three possible
variants. Then, the adaptation probability is computed as follows: It is assumed that
each context setting corresponds to a different node in a fully connected graph. Fur-
thermore, each of the graph nodes is colored with one of three colors, based on the
variant which optimizes the utility for that context setting. Finally, the probability is
computed by assuming that any context change can occur with the same probability,
and by counting the number of node-transitions that cause an adaptation (i.e. connect
nodes of different colors).

Equivalently, the probability for switching across different variants can be com-
puted using the following probability formula:

p= p(A1)·(p(B2)+p(C2))+p(B1)·(p(A2)+p(C2))+p(C1)·(p(A2)+p(B2)) (2)

166 N. Paspallis and G.A. Papadopoulos

Table 1. Adaptation evaluation outcomes as a result of different context settings; the last col-
umn depicts the probability that a context change can potentially trigger an adaptation

Bandwidth Response Hands-free iVisual
UI

Audio
UI Loc

Audio
UI Rem

Adaptation
Probability

0:10:40 0:25:100 false:true 20 18 12 65%
0:10:40 0:20:100 false:true 30 18 12 62%
0:20:100 0:25:100 false:true 24 28 8 60%
0:20:100 0:20:100 false:true 36 28 8 58%
40:10:80 0:20:100 false:true 30 30 0 50%
40:10:80 0:25:100 false:true 20 30 0 48%

In this formula, the probabilities p(Ai) refer to the probability for the corresponding
event at step i (i.e. selecting the variant at step i). For instance, the probability for a
change is equal to the sum of probabilities where the current variant is either A, B or
C (i=1) and the next variant is one of the other two variants (i=2).

As it is shown in Table 1, a context change does not always imply an adaptation.
Actually, the probability for an adaptation ranges from 65% down to 48% for the
given scenario. The columns of the three variants illustrate the number of configura-
tions for which that variant is optimal. The main lesson from this evaluation process is
that when the distributed nodes coordinate at the context sharing level, the number of
messages required for coordination can be significantly reduced (in this example by
more than 50%). Notably, this experiment has assumed that the context properties
were identical in both nodes (i.e. both devices refer to the same notion of bandwidth,
response and hands-free requirements). Finally, the constants of the utility function
were tuned to C1=80 and C2=20 respectively (see utility function in Fig. 3).

5 Related Work

There is a substantial amount of literature on adaptive, mobile systems. A very good
description of composite adaptive software is provided by McKinley et al in [13]. This
paper studies many basic concepts of adaptation, such as how, when and where to
compose. One statement in this work is that the main technologies which are required
for supporting compositional adaptations are Middleware, Separation of Concerns
(SoC), Computational reflection and Component-based design. This is in agreement
with the spirit of this paper. Applications are expressed in components, and SoC is
achieved by defining utility functions which express the adaptivity properties of the
compositions. Architectural reflection is used for enabling the actual reconfigurations
required for adaptivity and a middleware is assumed in the background, collecting the
distributed context management and distributed adaptation reasoning functionalities.

Another approach for enabling adaptivity from the coordination community is
LIME, which enables coordination by means of logical mobility as it is described in
[14]. In this case, the mobile hosts are assumed to communicate exclusively via tran-
siently shared tuple spaces. LIME offers decoupling both in space and time and al-
lows adaptations through reactive programming, i.e. by supporting the ability to react
to events.

 An Optimization of Context Sharing for Self-adaptive Mobile Applications 167

The Aura project [15], which built on the legacy of the Odyssey and Coda projects,
also describes a relevant approach. Aura targets primarily pervasive applications. For
this reason it introduced auras (which correspond to user tasks) as first class entities.
To this direction, the same project categorizes the techniques which support user
mobility into: use of mobile devices, remote access, standard applications (ported and
installed at multiple locations) and finally use of standard virtual platforms to enable
mobile code to follow the user as needed.

Unlike the existing literature, the approach which is described in this paper aims
for self-adaptive applications which are constructed and dynamically adapted using
architectural models. Additionally, this approach builds on previous work which de-
scribed two alternative strategies for distributed adaptation reasoning: proactive and
reactive approach [16]. Both of these offered significant advantages, depending on the
deployment environment. However, the hybrid strategy proposed in this paper enables
distributed adaptation reasoning merely through distributed context management.
Furthermore, it combines benefits from both the reactive and proactive strategies, to
achieve better results in terms of required communicated messages and response time,
something that is illustrated and validated through the description and the examination
of a case study example.

6 Conclusions

In this paper we have examined the problem of distributed context management and
adaptation reasoning, and we proposed an approach for overcoming it. Building on
two previous approaches, namely proactive and reactive adaptation reasoning, we
proposed a hybrid approach which aims at optimizing the number and timing of
communicated context change messages. This approach was illustrated and validated
through a case study example, which highlights its potential.

In the future, we plan to investigate further approaches which can enable agile and
efficient adaptation reasoning for distributed computing environments. Furthermore,
we aim at further studying the relationship between distributed context-awareness and
distributed adaptation reasoning, and propose approaches which further challenge it.

Acknowledgments. The authors would like to thank their partners in the MUSIC-IST
project, and acknowledge the partial financial support provided to this research by the
European Union (6th Framework Programme, contract number 035166).

References

1. Horn, P.: Autonomic Computing: IBM’s Perspective on the State of Information Technol-
ogy, IBM Corporation (2001), http://www.research.ibm.com

2. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E.: Using Architecture
Models for Runtime Adaptability. IEEE Software 23(2), 62–70 (2006)

3. Geihs, K., Khan, M.U., Reichle, R., Solberg, A., Hallsteinsen, S., Merral, S.: Modeling of
Component-Based Adaptive Distributed Applications. In: 21st ACM Symposium on Ap-
plied Computing (SAC), Dijon, France, April 23-27, 2006, pp. 718–722 (2006)

168 N. Paspallis and G.A. Papadopoulos

4. Paspallis, N., Papadopoulos, G.A.: An Approach for Developing Adaptive, Mobile Appli-
cations with Separation of Concerns. In: 30th Annual International Computer Software
and Applications Conference (COMPSAC), Chicago, IL, USA, September 17-21, 2006,
pp. 299–306. IEEE Computer Society Press, Los Alamitos (2006)

5. Szyperski, C.: Component software: beyond object-oriented programming. ACM Press /
Addison-Wesley Publishing Co (1998)

6. The MADAM Consortium: Mobility and Adaptation Enabling Middleware (MADAM),
http://www.ist-madam.org

7. The MUSIC Consortium: Self-Adapting Applications for Mobile Users in Ubiquitous
Computing Environments (MUSIC), http://www.ist-music.eu

8. Alia, M., Eide, V.S.W., Paspallis, N., Eliassen, F., Hallsteinsen, S., Papadopoulos, G.A.: A
Utility-based Adaptivity Model for Mobile Applications. In: 21st International Conference
on Advanced Information Networking and Applications Workshops (AINAW), Niagara
Falls, Ontario, Canada, May 21-23, 2007, pp. 556–563. IEEE Computer Society Press, Los
Alamitos (2007)

9. Paspallis, N., Chimaris, A., Papadopoulos, G.A.: Experiences from Developing a Context
Management System for an Adaptation-enabling Middleware. In: 7th IFIP International
Conference on Distributed Applications and Interoperable Systems (DAIS), Paphos, Cy-
prus, June 5-8, 2007, pp. 225–238. Springer Verlag, Heidelberg (2007)

10. Walsh, W.E., Tesauro, G., Kephart, J.O., Das, R.: Utility Functions in Autonomic Sys-
tems. In: International Conference on Autonomic Computing (ICAC), New York, NY,
USA, May 17-18, 2004, pp. 70–77. IEEE Press, Los Alamitos (2004)

11. Alia, M., Hallsteinsen, S., Paspallis, N., Eliassen, F.: Managing Distributed Adaptation of
Mobile Applications. In: 7th IFIP International Conference on Distributed Applications
and Interoperable Systems (DAIS), Paphos, Cyprus, June 5-8, 2007, pp. 104–118.
Springer Verlag, Heidelberg (2007)

12. Chen, G., Kotz, D.: A Survey of Context-aware Mobile Computing Research, Technical
Report: TR2000-381, Dartmouth College, Hanover, NH, USA (2000)

13. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.: Composing Adaptive Software.
IEEE Computer 37(7), 56–64 (July 2004)

14. Murphy, A.L., Picco, G.P., Roman, G.-C.: LIME: A Middleware for Physical and Logical
Mobility. In: 21st IEEE International Conference on Distributed Computing Systems
(ICDCS), Phoenix (Mesa), Arizona, USA, April 16-19, 2001, p. 524. IEEE Computer So-
ciety, Los Alamitos (2001)

15. Sousa, J.P., Garlan, D.: Aura: an Architectural Framework for User Mobility in Ubiquitous
Computing Environments. In: 3rd Working IEEE/IFIP Conference on Software Architec-
ture, Montreal, Canada, August 25-31, 2002, pp. 29–43. Kluwer Academic Publishers,
Dordrecht (2002)

16. Paspallis, N., Papadopoulos, G.A.: Distributed Adaptation Reasoning for a Mobility and
Adaptation Enabling Middleware. In: 8th International Symposium on Distributed Objects
and Applications (DOA). LNCS, vol. 4277, pp. 17–18. Springer, Heidelberg (2006)

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 169–172, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Network Service for DSP Multicomputers

Juan A. Rico-Gallego1, Jesús M.Álvarez-Llorente1, Juan C. Díaz-Martín2,
and Francisco J. Perogil-Duque2

1 Department of Engineering of Computer Systems and Telematics,
2 Department of Computer and Communication Technology

University of Extremadura, Avda. Universidad s/n, 10071, Cáceres, Spain
{jarico,llorente,juancarl,fperduq}@unex.es

Abstract. Programmers of embedded digital signal processors often have to
deal with the devices of the platform or with low level hardware abstraction
layers in order to reach the better performance from a given algorithm. This
complexity increases when the application is distributed on multicomputers
such as those by Sundance™, Hunt Engineering™, etc. These machines are
loosely coupled networks based on carrier boards hosting modules of digital
signal processors and FPGAs. This paper describes the design and implementa-
tion of a network layer library for these platforms. We show how, without a
significative lost of performance, it improves the portability of target applica-
tions by avoiding the hardware communication complexities. More important
yet, it broadens the spectrum of network applications and middlewares that
these powerful platforms can support.

Keywords: Digital signal processing, distributed embedded systems, DSP
multicomputers.

1 Introduction and Related Work

Advanced digital signal processing applications, like vision and high-frequency radio
communications, usually overcome the processing capacity of a digital signal proces-
sor (DSP), and have to be distributed among the set of processors provided by DSP
multicomputers like those by Sundance™, Hunt Engineering™, etc. Programmers
usually have to deal with the hardware when building high-performance DSP applica-
tions. Communication devices of the multicomputer raise this complexity. We have
designed and developed a network library whose interface hides the communication
hardware of the platform. Its implementation, in turn, follows the design principle of
portability and it achieves performance enough to serve as a building block for more
complex communication facilities and middlewares. The library has been constructed
and tested in PCI and CompactPCI DSP multicomputer boards from Sundance™
([1]). A Sundance SMT310Q carrier board can host up to four Texas Instruments
standard Modules (TIM). Each TIM usually integrates one or two Texas Instruments
TMS320C6416 processors running up to 1 GHz, with 1 MByte of fast internal SRAM
memory and 32 or more Mbytes of external SDRAM memory. Texas instruments
DSPs are broadly used in high performance real time signal processing applications.

170 J.A. Rico-Gallego et al.

They natively run DSP/BIOS, a proprietary small RTOS for task management and
synchronization in a single processor.

Diamond ([2]) is a distributed RTOS for Sundance machines. It is currently the
only system software in the market for Sundance boards. A Sundance board without
Diamond is in practice unusable. Diamond puts our Network Service in perspective.
Under Diamond, a distributed application is an immutable graph of tasks (nodes) and
data streams (arrows) statically configured. Every task has a vector of input ports and
a vector of output ports that connect tasks by name. These vectors are passed to the
main routine of the task. A program called the configurer running in the host PC
combines task image files to form the executable that it later loads on each processor.
A user-supplied textual configuration file drives the configurer. It specifies the hard-
ware (available processors and physical links connecting them), the software (tasks
and how they are connected), and how tasks are assigned to processors. A task sends a
message msg by invoking

chan_out_message(size, msg, out_ports[0]);

Note that no addressing is involved, what makes a communication independent of
the rank of the receiver or its specific location. As a result, the source code of a task is
independent of the graph it is in. Static configuration ensures the real-time application
will keep enough processing power and communication bandwidth during its life
time, but prohibits something as simple and useful as forking new applications at run-
time. Another severe limitation is that it is not possible a sporadic communication
between two unconnected tasks.

The Network Service is a small contribution in that address. In contrast with Dia-
mond, it is not a closed solution for mapping a distributed algorithm to a multi-DSP,
but an open library upon the local RTOS, whatever it is, that enables the deployment
of advanced communication middlewares, as the Internet Communication Engine
(ICE) or the Message Passing Interface (MPI) on this kind of platforms.

2 Design Issues and Performance

The layout of the whole design is shown in figure 1. The OSI (Operating System
Interface) layer provides a partial POSIX 1003.1c (Pthreads) interface. It implements
the well known Pthreads mutexes and condition variables on top of DSP/BIOS count-
ing semaphores in an efficient way. This allows porting the library to another RTOS
in a direct way. For instance, OSI runs also on top of Xilkernel, a small RTOS for
Virtex-II FPGA soft processors as PowerPC 405 and MicroBlaze. A typical Sundance
TIM module provides up to four Sundance Digital Bus (SDB) communication ports.
SDB can operate at a frequency of 120 MHz and transmit 16-bit in each cycle, reach-
ing a maximum physical rate of 240 MByte/s. SHB is a faster version which can
transmit 32-bits in each cycle with a 100 MHz clock, reaching 400 MByte/s. SDB
ports can be connected by physical wires following a design criterion. This allows
combining the processors in any topology.

LNK layer is the link level. It manages the point to point streams of bytes between
two TIMs physically connected by a SDB wire. LNK performs the fragmentation of

 A Network Service for DSP Multicomputers 171

large messages and hides the SDB programming. Its main data structure is the so
named cyclic buffer. This buffer stores the incoming frames arrived from the SDB
device via the on-chip EDMA device. Its size is configurable, and it is always loaded
in fast internal memory. One of the DMA channels is programmed at initialization
time to take a SDB as source and the cyclic buffer as destination in an endless loop.
This overlapping of communication and computation makes LNK quite efficient. The
EDMA raises an interrupt when a whole frame has been completed in the cyclic
buffer. This interrupt just awakes a sporadic internal task. This task extracts the
payload, which passes to NET by invoking an upcall procedure.

Fig. 1. Context and internal design of the Network Service (NET)

This procedure makes the decision of routing the packet or delivers it to the user
destination protocol (in USR). In this last case NET, in turn, extracts the payload and
invokes the upcall procedure installed by the user protocol. In addition to a reliable
connectionless point to point communication, NET provides a broadcast service and
routing, all this hiding the communication hardware. NET is intended to support more
advanced communication libraries. For instance, eMPI ([3]) is an ongoing implemen-
tation of the Message Passing Interface standard for embedded platforms. The most
important NET primitives are given next:

int NET_init (NET_topology *tpl);
void NET_finalize (void);
int NET_install (int (*upcall)());
int NET_send (iovec *iov, int cnt, int dstMch, int prot);
int NET_broadcast(iovec *iov, int count);

NET is complemented with a multicomputer loader. It greatly simplifies the proc-
ess of loading the applications on the board and provides NET with the configuration
of the platform it is running on. This configuration can also be passed by USR to NET
as a parameter of NET_init. The bootloader is really a worm that explores the mul-
ticomputer and stores the obtained information.

Figure 2 gives performance figures. A task in a SMT395 TIM A sends messages to
a task in a SMT395 TIM B connected by a 32-bit SDB bus. NET provides a band-
width of around 275 Mbyte/s. The same test has been carried out on Diamond (ver-
sion 3.3). Diamond shows a peak in performance of up to 400 MBytes/s when one of
the available SDBs is dedicated to communicate of two given tasks. If the link is
shared by more than two tasks (virtual link), the performance decreases below NET.

172 J.A. Rico-Gallego et al.

Fig. 2. Diamond and NET bandwidth test for increasing message sizes. Diamond only over-
comes our library when it reserves the physical SDB link for the communicating tasks.

3 Conclusions

Today demanding signal processing applications, mainly coming from the vision and
radio-communications fields, are supported by DSP multicomputer platforms, such
are those by Sundance. Current system software for these platforms, however, only
supports a single application in a dedicated way. In our view, the main contribution of
this paper is the finding that an abstract network layer can be built on these state of
the art machines without a serious performance penalty. This fact, first, allows that
these expensive systems can be shared by two or more applications and, second, en-
ables the deployment of communication middlewares, such as MPI.

Acknowledgments. This work has been supported by CDTI under program “Ingenio
2010” (project CENIT-2005 HESPERIA) and the “II Plan de Desarrollo Tecnológico
de la Junta de Extremadura” (project 2PR03A042).

References

1. http://www.sundance.com
2. http://www.3l.com/Diamond/Diamond.htm
3. Rico-Gallego, J.A., Díaz-Martín,, Álvarez Llorente, J.C., Jesús, M.: An MPI Implementa-

tion for Distributed Signal Processing. In: Di Martino, B., Kranzlmüller, D., Dongarra, J.
(eds.) EuroPVM/MPI 2005. LNCS, vol. 3666, pp. 475–482. Springer, Heidelberg (2005)

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 173–184, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Non-blocking Multithreaded Architecture with
Support for Speculative Threads

Krishna Kavi1, Wentong Li1, and Ali Hurson2

1 University of North Texas
{kavi,wl}@cse.unt.edu

2 Missouri University of Science and Technology
hurson@mst.edu

Abstract. In this paper we provide both a qualitative and a quantitative evalua-
tion of a decoupled multithreaded architecture that uses non-blocking threads.
Our architecture is based on simple in-order pipelines and complete decoupling
of memory accesses from execution pipelines. We extend the architecture to
support thread level speculation using snooping cache coherency protocols. We
evaluate the performance gains from speculations by varying the number of
load/store instructions compared to computational instructions, miss speculation
rates and the degree of thread level speculation. Our architecture presents a vi-
able alternative to complex superscalar and super-speculative CPUs.

Keywords: Multithreaded Architectures, Cache Coherency, Thread Level
Speculation, Decoupled Architecture.

1 Introduction

Superscalar and VLIW architectures are the main architectural models used in com-
mercial processors. These models allow for more than one instruction to be issued on
every cycle. Modern processors expend large amounts of silicon area and transistor
budgets to achieve higher levels of performance with techniques such as out-of-order
execution, branch and value prediction and speculative instruction execution. It has
been shown that these techniques are approaching diminishing returns in terms of
further improving single processor performance [1]. This has led to an increased in-
terest in architectures that support concurrent processing, and multicore or chip multi-
processors (CMP) systems. The complexity of the underlying superscalar architecture
makes it harder to scale the clock frequency for these designs.

It appears that the dataflow computing paradigm is back in vogue, as an alternative to
superscalar models, as can be seen from recent architectural proposals including TRIPS
[3, 4] and Wavescalar [5]. However, implementing dataflow model at instruction level
(such as token driven models) requires complex hardware for communicating operands
among instructions. In contrast, our architecture uses dataflow like synchronization at the
thread-level, while using control flow semantics within a thread. This approach
minimizes instruction level communication, but permits for scalable implementations.
Our architecture should be also be contrasted with Wavescalar [5] that uses a complex
memory-ordering scheme that involves tagging each memory transaction with a

174 K. Kavi, W. Li, and A. Hurson

predecessor and successor memory access. We use epoch numbers with threads and
extend cache coherency protocols to achieve proper memory ordering.

Our architecture differs from other multithreaded architectures in two ways: i) our
threads are based on dataflow paradigm, and ii) we completely decouple all memory
accesses from execution pipeline. The underlying non-blocking thread model permits
for clean separation of memory accesses from execution (which is very difficult to
coordinate in other programming models). Data is pre-loaded into an enabled thread's
register context prior to its scheduling on the execution pipeline. After a thread
completes execution, the results are post-stored from its registers into memory. The
execution engine relies on control-flow like sequencing of instructions, but our
architecture performs no (dynamic) out-of-order execution and thus eliminates the
need for complex instruction issue and retiring hardware. These hardware savings
may be utilized to include either more processing units on a chip or more register sets
to increase the degree of multithreading. Moreover, it was stated that a significant
power is expended by instruction issue logic, and the power consumption increases
quadratically with the size of the instruction issue width [6], and thus our architecture
should be more energy efficient since we perform in-order instruction issue.

We are able to perform some quantitative evaluation of our architecture using
hand-coded programs. Our goal here is to provide both a quantitative (albeit limited in
scope) and a qualitative evaluation of our innovative architecture. In this paper we
extend our architecture to support speculative execution of threads using epoch
numbers and provide some preliminary quantitative analysis.

1.1 Related Research

Compilers extract parallelism by spawning multiple loop iterations concurrently, and
with hardware support for thread-level speculation (TLS) that enforces dynamic data
and control dependency checks, compilers can more aggressively exploit thread level
concurrency. Marcuello et. al., [7] proposed a multithread micro-architecture that
supports speculative thread execution within a single processor. This architecture
contains multiple instruction queues, register sets, and a very complicated multi-value
cache to support speculative execution of threads. Zhang et. al., [8] proposed a
scheme that supports speculative thread execution in large scale distributed shared
memory (DSM) systems relying on cache coherence protocols. Steffan et. al., [9]
proposed an architecture that supports TLS execution both within a CMP core and
large scale DSMs. This design is based on conventional architecture, but needs very
extensive support from the operating system. The design is based on cache coherence
protocols, but the published literature does not provide details on the implementation.
Our design needs a small amount of extra hardware to implement speculation in the
context of SDF architecture.

2 Scheduled Dataflow Architecture

A processing element in our scheduled dataflow architecture (SDF) is composed of
three components: Synchronization Processor (SP), Execution Processor (EP) and
thread schedule unit. Each thread is uniquely represented by a continuation <FP, IP,

 A Non-blocking Multithreaded Architecture with Support for Speculative Threads 175

RS, SC>, where FP is the Frame Pointer (where thread input values are stored), IP is
the Instruction Pointer (which points to the thread code), RS is a register set (a dy-
namically allocated register context), and SC is the synchronization count (the num-
ber of inputs needed to enable the thread). The synchronization count is decremented
when a thread receives its inputs, and the thread is scheduled on SP when the count
becomes zero. SP is responsible for pre-loading data needed by the thread into its
context (i.e., registers), and post-storing results from a completed thread into memory
or frames of destination threads. The EP performs thread computations, including
integer and floating point arithmetic operations, and spawns new threads. A more
general implementation can include multiple EPs and SPs to execute threads from
either a single task or independent tasks. Multiple SPs and EPs can be configured into
multiple clusters. Inter-cluster communications will be achieved through shared
memory.

An Example. To understand the decoupled, scheduled dataflow concept, consider one
iteration of the innermost loop of matrix multiplication: c[i,j] = c[i,j] + a[i,k]*b[k,j].
Our SDF code is shown in Figure 1. In this example we assume that all necessary
base addresses and indexes for the arrays are stored in the thread’s frame. The thread
is enabled after it receives all inputs in its frame, and a register context is allocated.

Preload
:

LOAD RFP|2, R2 # base of a into R2 body: MULTD R8,R9 R11 #a[i,k]*b[k,j] in
R11

 LOAD RFP|3, R3 # index a[i,k] into R3 ADDD R10,R11, R10 # c[i,j] +
a[i,k]*b[k,j] in
R10

 LOAD RFP|4, R4 # base of b into R4 FORKSP poststore #transfer to SP
 LOAD RFP|5, R5 # index b[k,j] into R5 STOP
 LOAD RFP|6, R6 # base of c into R6
 LOAD RFP|7, R7 # index c[i,j] into R7
 IFETCH R2, R3, R8 # fetch a[i,k] to R8 poststore: ISTORE R6,R7, R10 #save c[i,j]
 IFETCH R4, R5, R9 # fetch b[k,j] to R9 STOP
 IFETCH R6, R7, R10 # fetch c[i,j] to R10
 FORKEP body # transfer to EP
 STOP

Fig. 1. A SDF Code Example

SP executes the preload portion of the code to transfer data into the registers
allocated for the thread. The body portion of the code is executed by the EP
performing necessary computations while the poststore portion is completed by the
SP to store results into either the frames of other threads (and possibly enabling them)
or the I-structure [10]. I-structure access instructions (IFETCH and ISTORE) need a
base and an index into the array and these values are contained in a pair of registers.
Note that only SP accesses data caches (frame cache and I-structure cache) while EP
only accesses thread registers. A thread can move between EP and SP as needed to
fetch or store data from/to registers (FORKSP and FORKEP serve this purpose and
they take 4 cycles). Although not shown in this example, SP can perform index and
address computations since each SP is provided with an integer arithmetic unit.
Unlike token driven models, our instructions (for example MULTD) are provided
with a pair of store locations (in our example R8 and R9) for input operands so that
the instructions need not be executed immediately when the second operand arrives
(as is the case in token driven models). Our instructions are “scheduled” like control

176 K. Kavi, W. Li, and A. Hurson

flow architectures using program counters. Our instruction driven approach eliminates
the need for complex communications to exchange tokens among processing
elements. We simplified this example to illustrate the general structure of SDF code.
In general, techniques such as loop unrolling can be used to increase the size of the
loop body, and multiple threads can be created to execute loop iterations in parallel.

3 Thread-Level Speculation Schema for the SDF Architecture

For the non-speculative SDF architecture, if there is an ambiguous RAW (true de-
pendence) that cannot be resolved at compile time, the compiler generates sequential
threads to guarantee correct execution using I-structure [10] semantics. This will
reduce the performance of programs. However, with hardware support for speculative
execution of threads and committing results only when the speculation is verified, a
complier can more aggressively create concurrent threads.

3.1 SDF Architecture Supported by the Schema

Our TLS schema not only supports speculative execution within a single SDF cluster
consisting of multiple EPs and SPs, but also supports speculation among SDF clusters
using distributed shared memory (DSM). Our design is derived from a variation of the
invalidation based MESI protocol [13]. By applying the MESI protocol, we can en-
force coherence of data caches on different nodes in a DSM system. We add extra
hardware in each node to maintain intra-node coherence.

3.2 States in Our Design

In our schema, an invalidate message will be generated by a node to acquire exclusive
ownership of data stored in a cache line before updating the cache. In addition to the 3
states of MESI protocol (Excusive (E), Shared (S), and Invalid (I)), we add two more
states: speculative read of an exclusive data (SpREx) and speculative read of a shared
data (SpR.Sh)1. We can distinguish the states easily by adding an extra S (Speculative
read) bit to each cache line. Table 1 shows the encoding of the states.

Table 1. Encoding of Cache Line States

 SpRead Valid Dirty(Exclusive)

I X 0 X

E/M 0 1 1

S 0 1 0

SpR.Ex 1 1 1

SpR.Sh 1 1 0

1 We do not permit speculative writes.

 A Non-blocking Multithreaded Architecture with Support for Speculative Threads 177

3.3 Hardware Design of Our Schema

In the new architecture, a (speculative) thread is defined by a new continuation -- <FP,
IP, RS, SC, EPN, RIP, ABI >. The first four elements are the same as the original con-
tinuations in SDF (see Section 2). The added elements are the epoch number (EPN), re-
try instruction pointer (RIP) and an address-buffer ID (ABI). For any TLS schema, an
execution order of threads must be defined based on the program order. We use epoch
numbers (EPN) for this purpose. Speculative threads must commit2 in the order of their
epoch numbers. RIP defines the instruction at which a failed speculative thread must start
its retry. ABI defines the buffer ID that is used to store the addresses of speculatively-
read data. For the non-speculative thread, the three new fields will all be set to zero. We
add a separate queue for speculative threads to control the order of their commits.
Figure 2 shows the overall design of our new architecture .

Fig. 2. Overall Design

For the controller (Thread Schedule Unit) to distinguish between speculative and
non-speculative threads, it only needs to test the epoch field of the continuation to see
if it is equal zero (as stated previously, a non-speculative thread’s EPN is set to zero
and any continuation that has a non-zero epoch number is a speculative thread). The
commit control maintains the epoch number of the next thread that can commit based
on the program order and will test the epoch number of a continuation that is ready
for commit. If these numbers are the same and no data access violations are found in
the reorder buffer associated with the thread, the commit controller will schedule the
thread for commit (i.e, schedule the thread on SP for post-store). If there is a viola-
tion, the commit controller sets the IP of that continuation to RIP and places it back in
the preload queue for re-execution. At this time, the thread becomes non- speculative.

We use a few small fully-associative buffers to record the addresses of data that
are speculatively accessed by speculative threads. Data addresses are used as indices
into these buffers. The small fully associative buffers can be implemented using an

2 In our architecture, a thread commits its results to memory by executing the post-store part of

its code.

178 K. Kavi, W. Li, and A. Hurson

associative cache where the number of sets represents the maximum number of specula-
tive threads and the associativity represents the maximum number of speculative data
that can be read by a thread. For example, a 64 set 4-way associative cache can support
64 speculative threads, with 4 speculative address entries per thread. The address buffer
ID (ABI) is assigned when a new continuation for a speculative thread is created. When a
speculative read request is issued by a thread, the address of the data being read is stored
in the address buffer assigned to the thread and the entry is set to valid. When a specula-
tively read data is subsequently written by a non-speculative thread, the corresponding
entries in the address buffers are invalidated, preventing speculative threads from com-
mitting. The block diagram of address buffer for a 4-SP node is shown in Figure 2. This
design allows invaliding a speculatively-read data in all threads simultaneously. It also
allows different threads to add different addresses into their buffers. When an “invali-
date” request comes from the bus or a write request comes from inside the node, the data
cache controller will change the cache line states, and the speculative controller will
search the address buffer to invalidate appropriate entries.

Threads in SDF architecture are fine-grained and thus the number of data items
read speculatively will be small. By limiting the number of data items read specula-
tively, the probability that a speculative thread successfully completes can be im-
proved. For example, if p is the probability that a speculatively read data will be
invalidated, then the probability that a thread with n speculatively read data items will
successfully complete is given by (1-p)n. With 4 to 8 speculative reads per thread and
16 speculative threads, we only need 64 to 128 entries in the address buffers. Because
our threads are non-blocking, we allow threads to complete execution even if some of
the speculatively read data is invalidated. This eliminates complex mechanisms to
abort threads, but may cause wasted execution of additional instructions of specula-
tive threads.

Fig. 3. Address Buffer Block Diagram

 A Non-blocking Multithreaded Architecture with Support for Speculative Threads 179

3.4 States Transition Diagram

A speculative thread cannot write any results to data cache. The results of a thread
(during post-store) are not committed unless all speculative reads remain valid at the
time the thread is ready for commit (in the order of epoch numbers). An invalid
speculation will force the thread to retry using RIP pointer.

a. Request from a Node

b. Request from Bus

Fig. 4. State Transition Diagrams

Figure 3 shows the state transition diagrams for tracking data reads and writes by
speculative and non-speculative threads. Figure 3a shows the cache line state transi-
tions due to requests from a node within a cluster (i.e., intra-node). The key idea is
that every speculative read will change the cache line state to speculative and also
allocates an entry in the corresponding ABI buffer and every (non-speculative) write
will invalidate the entries in the ABI buffer. Figure 3b shows the cache line state
transitions due to bus activities (i.e., inter-node transactions). The write miss message
from the bus will invalidate cache line and corresponding ABI entries. Due to the
page limits, we will not explain these diagrams in detail, but they are similar to MESI
type cache coherency protocols.

3.5 Instruction Set Architecture Extension

We added three new instructions to SDF instruction set for thread-level speculation
support. The first instruction is for speculatively spawning a thread. This instruction
will request the system to assign an epoch number and an ABI for the new continua-
tion. The second instruction is for speculatively reading data, which will cause the
addition of an entry into the address buffer associated with that continuation. It should
be noted that not all reads of a speculative thread are speculative reads. A compiler
can resolve most data dependencies and use speculative reads only when static analy-
ses cannot determine memory ordering. It should also be noted that when a specula-
tive thread is invalidated, the retry needs only to re-read speculatively-read data. The
third instruction is for committing a speculative thread. This instruction places the
speculative thread continuation into the speculative thread commit queue.

180 K. Kavi, W. Li, and A. Hurson

3.6 Experiment and Results

We extend our SDF simulator with this speculative thread execution schema. This
simulator performs cycle-by-cycle functional simulation of SDF instructions.

3.6.1 Synthetic Benchmark Results3
We created benchmarks that execute a loop containing variable number of instruc-
tions. We control the amount time a thread spends at SPs and EPs by controlling the
number of LOADS and STORES (workload on SP) and computational instructions
(workload on EP). Then we use the TLS to parallelize these benchmarks. We test this
group of benchmarks both in term of the scalability and the success rate of the specu-
lative threads.

Figure 4a shows the performance of a program that spends 33% of the time at SPs
and 67% of time at EPs, when executed without speculation. Figure 4b shows the
performance for programs with 67% SP workload, 33% EP workload, while Figure 4c
shows the data for programs with 50% SP and EP workloads (if executed non-
speculatively). All programs are tested using different speculation success rates. We
show data with different number of functional units: 8SPs-8EPs, 6SPs-6EPs, 4SPs-
4EPs, and 2SPs-2EPs.

Since our SDF performs well when the SPs and EPs have balanced load (and
achieve optimal overlap of threads executing at EPs and SPs), we would expect best
performance for the case shown in Figure 4c and when the success of speculation is
very high (closer to 100%). However, even if we started with a balanced load, as the
speculation success drops (and is closer to zero), the load on EPs increase because
failed threads will have to re-execute their computations. As stated previously, a
failed thread only needs to re-read the data items that were read speculatively and data
from a thread are post-stored only when the thread speculation is validated. Thus a
failed speculation will disproportionately add to EP workload. For the case shown in
Figure 4b, with a smaller EP workload, we obtain higher speed-ups (compared
Figures 4a or 4c) even at lower success rates of speculation, since EPs are not heavily
utilized in this workload. For the 33%-66% SP-EP workload in Figure 4a, even a very
high success rates will not lead to high performance gains on SDF, because EP is
overloaded to start with, and the mis-speculative will add to the load of EPs.

From this group of experiments, we can draw the following conclusions. Specula-
tive thread execution can lead to performance gains over a wide range of speculation
success probabilities. We can obtain at least 2-fold performance gain when the suc-
cess of speculation is greater than 50%. If the success rate drops below 50%, one
should turn off speculative execution to avoid excessive retries that can overload EPs.
When the EP workload is less than the SP workload, we can tolerate higher rates of
mis-speculation. Finally, when the success rates are below 50%, the performance does
not scale well with added SPs and EPs (8SPs-8EPs, 6SPs-6EPs, and 4SPs-4EsP all
show similar performance). This suggests that the success of speculation can be used
to decide on the number of SPs and EPs needed to achieve optimal performance.

3 These are actual programs written for SDF and run on our simulator. We controlled the num-

ber of Load/Store instructions, and controlled which speculative threads successfully commit
(post-store) their results.

 A Non-blocking Multithreaded Architecture with Support for Speculative Threads 181

 0

 2

 4

 6

 8

 10

 12

 100 90 80 70 60 50 40 30 20 10 0

S
p
e
e
d
u
p

Success Rate (%)

8SP8EP
6SP6EP
4SP4EP
2SP2EP

 0

 2

 4

 6

 8

 10

 12

 100 90 80 70 60 50 40 30 20 10 0

S
p
e
e
d
u
p

Success Rate (%)

8SP8EP
6SP6EP
4SP4EP
2SP2EP

a. SP:EP 33%:66% b. SP-EP 66%:33%

 0

 2

 4

 6

 8

 10

 12

 14

 16

 100 90 80 70 60 50 40 30 20 10 0

S
p
e
e
d
u
p

Success Rate (%)

8SP8EP
6SP6EP
4SP4EP
2SP2EP

C. SP:EP 50%:50%

Fig. 4. Performances Model of TLS Schema

3.6.2 Real Benchmarks
To further test our design, we selected a set of real benchmarks. We hand-coded these
benchmarks using SDF assembly language. This group of benchmarks includes: Liver-
more loops 2 and 3; two major functions from compress() and decompress() (from
129.compress) and four loops chosen from 132.ijpeg. Table 2 shows the detailed descrip-
tion of the benchmarks. We code these benchmarks in two forms: one without specula-
tion, where all the threads are executed linearly, and the other with speculation. In the
speculative execution, earlier iterations (or threads with lower epoch numbers) generate
speculative threads for later iterations (or threads with higher epoch numbers).

Table 2. Selected Benchmarks

Suite Application Selected Loops
 Loop2 Livermore

Loops Loop3
Compress.c:480 while loop 129.Compress95
Compress.c:706 while loop
Jccolor.c:138 for loop
Jcdectmgr.c:214 for loop
Jidctint.c:171 for loop

SPEC 95

132.ijpeg

Jidctint.c:276 for loop

182 K. Kavi, W. Li, and A. Hurson

We evaluated performance gains using different number of SPs and EPs and the
results are shown in Figure 5. The speculative execution does achieve higher speed-
ups - between 30% and 158% for 2SP-2EP configuration and between 60% and 200%
speedup for 4SP4EP configuration. To compare our results with those of [9], we use
the parallel coverage parameter defined in [9]. Using 4SP4EP configuration to com-
pare with their 4 tightly coupled, single threaded superscalar pipeline processors, for
compress95 we achieve a speedup of 1.94 compared to 1.27 achieved by [9]; and a
speedup of 2.98 for ijpeg compared to 1.94 achieved by [9].

Another finding from Figure 5 is that our performance does not scale well after
4SP4EP configuration. This is because of the way we generated threads – we generate
very limited number of speculative threads, since each iteration only generates one
new speculative thread. However with an optimizing compiler, it will be possible to
generate as many speculative threads as needed to fully utilize available processing
and functional units.

Fig. 5. Performance gains normalized to non-speculative implementation

Fig. 6. Performance gains normalized to non-speculative implementation

 A Non-blocking Multithreaded Architecture with Support for Speculative Threads 183

We repeated our experiments with the same benchmarks but using a control thread
that spawning multiple speculative threads at a time. For livermore loops, the control
thread spawns 10 iterations a time, and for the compress95 and the jpeg, the control
thread spawns 8 iterations a time. The results are shown in Figure 6. For most cases,
this approach does show better scalability with added functional units. Livermore
loop 3 and compress are the exceptions. For these applications, the mis-speculation is
very high and since on mis-speculation all threads become non-speculative (executing
sequentially) the available concurrency is reduced. It should be noted, however, our
approach does lead to higher speedups than those reported in [9].

4 Summary and Conclusions

Our goal here is to provide a qualitative and a quantitative evaluation of an inno-
vative non-blocking multithreaded architecture that decouples all memory access
from execution pipeline. Our quantitative evaluations are limited to hand-coded
benchmarks. At this time, we do not have a compiler, but we hope that we will be
able find support to design and implement an optimizing compiler for our architec-
ture. An optimizing compiler is needed to take full advantage of SDF features.

In previous sections we have shown that SDF can achieve scalable performance
that is comparable or better than Simplescalar, VLIW and SMT architectural para-
digms. We also have shown that thread level speculation on SDF can lead to speedups
that are better than or comparable to other speculative execution models. In addition,
SDF offers several qualitative advantages over existing architectural paradigms.

Separating PEs into SPs and EPs has distinct advantages. One can tailor the num-
ber of SP and EP units included in a single “computation cluster” to maximize per-
formance of experimentally determined computation needs. The number and types of
functional units (viz., integer and floating point arithmetic units) within these process-
ing elements can also be varied. The EPs and SPs can easily be run at different clock
speeds, providing power savings. Such control is easier to implement in our system
than proposed globally asynchronous, locally synchronous (GALS) designs that con-
tain multiple clock domains (MCD’s) ([15], [16]). And by keeping the EP and SP
pipelines extremely simple with no out-of-order instruction execution, we can address
power constraints, provide additional computing power by including multiple simple
SP and EP clusters on a chip, or more register sets.

SDF uses non-blocking threads, leading to non-preemptive scheduling of threads.
Although real-time systems often use pre-emptive scheduling to meet required reac-
tive times, non-preemptive scheduling is more efficient, particularly for soft real-time
applications and applications designed for multithreaded systems, since the non-
preemptive model reduces the overhead needed for switching among tasks (or
threads) [17]. The decoupled memory of SDF implies that each thread goes through at
least 3 scheduling points: preload when the thread’s inputs (and I-structure data) are
transferred to its registers at an SP, execute when the thread performs its computation
at an EP, and poststore when the thread transfers results from its registers to memory
or other threads at an SP. Each of these scheduling points allows us to determine
which thread should be scheduled. Such fine-grained real-time scheduling is not pos-
sible with other thread models. The non-preemptive execution is applicable even to

184 K. Kavi, W. Li, and A. Hurson

speculative threads, thus simplifying the management of thread-level speculation. All
threads are allowed to complete but only those threads that can commit are allowed to
complete post-store portions of their code.

References

[1] Agarwal, V., Hrishikesh, M.S., Keckler, S.W., Burger, D.: Clock Rate Versus IPC: The
End of the Road for Conventional Microarchitectures. In: 27th International Symposium
on Computer Architecture (ISCA), June 2000, pp. 248–259 (2000)

[2] Tullsen, D.M., Eggers, S.J., Levy, H.M., Lo, J.L.: Simultaneous multithreading: Maxi-
mizing on-chip parallelism. In: International. Symposium on Computer Architecture
(ISCA), June 1995, pp. 392–403 (1995)

[3] Sankaralingam, K., Nagarajan, R., Liu, H., Huh, J., Kim, C.K., Burger, D., Keckler, S.W.,
Moore, C.R.: Exploiting ILP, TLP, and DLP Using Polymorphism in the TRIPS Archi-
tecture. In: 30th International Symposium on Computer Architecture (ISCA), June 2003,
pp. 422–433 (2003)

[4] Burger, D., et al.: Scaling to the end of silicon with EDGE architectures. IEEE Computer,
44–55 (July 2004)

[5] Swanson, S., Michelson, K., Schwerin, A., Oskin, M.: WaveScalar. In: Proceedings of the
36th International Symposium on Microarchitecture(MICRO), December 2003, pp. 291–
302 (2003)

[6] Onder, S., Gupta, R.: Superscalar execution with direct data forwarding. In: Proc of the
International Conference on Parallel Architectures and Compiler Technologies, Paris, Oc-
tober 1998, pp. 130–135 (1998)

[7] Marcuello, P., Gonzalez, A., Tubella, J.: Speculative Multithreaded Processors. In: Pro-
ceeding of the International Conference on Supercomputing, July 1998, pp. 77–84 (1998)

[8] Zhang, Y., Rauchwerger, L., Torrelas, J.: Hardware for Speculative Parallelization of Par-
tially-Parallel Loops in DSM Multiprocessors. In: 5th International Symposium on High-
Performance Computer Architecture (HPCA), January 1999, pp. 135–141 (1999)

[9] Steffan, J.G., Colohan, C.B., Zhai, A., Mowry, T.C.: A Scalable Approach to Thread-
Level Speculation. In: 27th International Symposium on Computer Architecture (ISCA),
June 2000, pp. 1–12 (2000)

[10] Arvind, Nikhil, R.S., Pingali, K.K.: Istructures: Data-structures for parallel computing.
ACM Transactions on Programming Languages and Systems 4(11), 598–632 (1989)

[11] Burger, D., Austin, T.M.: The SimpleScalar Tool Set Version 2.0, Tech Rept. #1342, De-
partment of Computer Science, University of Wisconsin, Madison, WI

[12] Terada, H., Miyata, S., Iwata, M.: DDMP’s: Self-timed Super-pipelined Data-driven Mul-
timedia Processor. Proceedings of the IEEE, 282–296 (February 1999)

[13] Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach, 3rd
edn. (2003)

[14] Hurson, A.R., Lim, J.T., Kavi, K.M., Lee, B.: Parallelization of DOALL and
DOACROSS Loops – A Survey. Advances in Computers 45, 53–103 (1997)

[15] Magklis, G., et al.: Dynamic Frequency and Voltage Scaling for a Multiple Clock Do-
main Microprocessor. IEEE Micro, 62–69 (November/December 2003)

[16] Semeraro, G., et al.: Dynamic frequency and voltage control for multiple clock domain
microarchitecture. In: Proc. of International symposium on microarchitecture (MICRO-
35), pp. 356–370 (2002)

[17] Jain, R., Hughes, C.J., Adve, S.V.: Soft Real-Time Scheduling on Simultaneous Multi-
threaded Processors. In: Proceedings of the 23rd IEEE International Real-Time Systems
Symposium (December 2002)

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 185–195, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Finding Synchronization-Free Parallelism Represented
with Trees of Dependent Operations

Wlodzimierz Bielecki2, Anna Beletska1, Marek Palkowski2, and Pierluigi San Pietro1

1 Dipartimento di Elettronica e Informazione, Politecnico di Milano,
20122 via Ponzio 34/5, Milano, Italy

{beletska,sanpietr}@elet.polimi.it
2 Faculty of Computer Science, Technical University of Szczecin,

70210 Zolnierska 49, Szczecin, Poland
{wbielecki,mpalkowski}@wi.ps.pl

Abstract. Algorithms are presented for extracting synchronization-free parallel-
ism available in arbitrarily nested parameterized loops. The parallelism is
represented with synchronization-free trees of dependent operations. Sets repre-
senting trees can be described with non-linear expressions. The main idea is to
firstly extract sources of synchronization-free trees and next to generate parallel
code based on a while loop. Experimental results are presented exposing speed-
up and efficiency of parallel programs written in the OpenMP standard on the
basis of code generated by the algorithms proposed.

1 Introduction

Finding coarse-grained parallelism in loops is of great importance to get scalable
performance for parallel and distributed computing. Its purpose, however, is not lim-
ited to this, since it may also increase program performance on a uniprocessor system
by enhancing data locality.

Different techniques have been developed to extract coarse-grained parallelism that
is represented with synchronization-free slices of computations available in loops, for
example, those presented in papers [1,2,3,4,5]. Unfortunately, there does not exist any
technique allowing us to extract slices represented with sets described with non-linear
expressions. Hence, potential parallelism is left unexploited in some cases.

In this paper, we demonstrate how to extract synchronization-free trees of transi-
tively dependent operations when well-known techniques do fail to extract such trees.
We show how to generate code scanning slices even when they are represented with
sets described with non-linear forms. Proposed algorithms are applicable to the
arbitrarily nested parameterized loop.

2 Background

A nested loop is called perfectly nested if all its statements are comprised within the
innermost nest. Otherwise, the loop is called imperfectly nested. An arbitrarily nested

186 W. Bielecki et al.

loop can be both perfectly and imperfectly nested. An operation is a particular execu-
tion of a statement of the loop body for a given iteration.

Two operations I and J are dependent if both access the same memory location and
if at least one access is a write. I and J are called the source and destination of a de-
pendence, respectively, provided that I is lexicographically smaller than J (I≺ J, i.e., I
is always executed before J).

In this paper, we deal with affine loop nests where i) for given loop indices, lower
and upper bounds as well as array subscripts and conditionals are affine functions of
surrounding loop indices and possibly of structure parameters (i.e., parameterized
loop bounds), and ii) the loop steps are known positive constants.

Our approach requires an exact representation of loop-carried dependences and
consequently an exact dependence analysis which detects a dependence if and only if
it actually exists. To describe and implement our algorithms, we choose the depend-
ence analysis proposed by Pugh and Wonnacott [6] where dependences are repre-
sented by dependence relations.

A dependence relation is a tuple relation of the form {[input_list] → [output_list]:
formula}, where input_list and output_list are lists of variables and/or expressions
used to describe input and output tuples and formula describes the constraints
imposed upon input_list and output_list and it is a Presburger formula built of
constraints represented with algebraic expressions and using logical and existential
operators.

We distinguish between a single dependence (a pair of operations: dependence
source and destination) and a dependence relation representing multiple dependences.

We distinguish between a dependence graph representing all the dependences
among loop operations and a reduced dependence graph being composed by vertices
for each statement si, 1≤i≤r, of the loop and edges joining vertices according to de-
pendence relations Ri,j, where i,j ∈[1,r], being exposed by an exact dependence analy-
sis, r is the number of statements within the loop body.

Definition 1. An ultimate dependence source is a source that is not the destination of
another dependence.

Program slicing is a viable method to restrict the focus of a task to specific sub-
components of a program. Program slicing was first introduced by Mark Weiser [7],
with a notion of slice based on the deletion of statements: a slice is an executable
subset of program statements that preserves the original behavior of the program with
respect to a subset of variables of interest and at a given program point [8].

Iteration space slicing [9] takes dependence information as input to find all state-
ment instances of a given loop nest, which must be executed to produce the correct
values for the specified array elements.

In this paper, we use the following definition of a slice.

Definition 2. Given a dependence graph, D, defined by a set of dependence relations,
S, a slice is a weakly connected component of graph D, i.e., a maximal subgraph of D
such that for each pair of vertices in the subgraph there exists a directed or undirected
path.

If there exist two or more slices in D, then taking in the account the above defini-
tion, we may conclude that all slices are synchronization-free, i.e., there is no depend-
ence between them.

 Finding Synchronization-Free Parallelism Represented with Trees 187

Definition 3. The source(s) of a slice is the ultimate dependence source(s) that this
slice comprises.

In this paper, we present algorithms to extract synchronization-free slices whose
topology is a tree. Each tree is represented by a set of operations transitively depend-
ent on a single dependence source such that there does not exist an operation being a
dependence destination corresponding to two or more different dependence sources.

We use standard operations on relations and sets, such as intersection (∩), union
(∪), difference (−), domain R, range R, relation application (S′ = R(S): e′∈S′ iff ∃e
s.t. e→e′ ∈ R, e ∈ S). In detail, the description of these operations is presented in
[6,10,11].

The algorithm presented in this paper deals with strongly connected components
(SCCs). An SCC is a maximal subset of vertices and edges of a reduced dependence
graph [5] where for every pair of vertices there exists a directed path.

3 Motivating Example

To demonstrate that the well-known affine transformation framework (ATF) does fail
to extract synchronization-free slices for particular loops, let us consider the following
perfectly-nested loop

Example 1

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++)
s1: a[i,j]=(j==1?a[2*i][j]:a[i][j+1]);

Dependences originated by this loop (see Fig. 1) can be represented by the follow-
ing dependence relations

1
1s,1sR := {[i,1] → [2i,1]: 1≤i & 2i≤ n},

2
1s,1sR := {[i,j] → [i,j+1] : 1 ≤ i ≤ n & 1 ≤ j < n }.

In order to extract synchronization-free parallelism by means of ATF, we use the
relations above to construct the following system of equations

i

j

1 2 3 4 5 6

6

...

2

1

Sources of slices

Fig. 1. Dependences for motivating example for n=6

188 W. Bielecki et al.

⎩
⎨
⎧

+++=++
++=++

.112121111211

1121111211

cCj*Ci*Ccj*Ci*C

;cCi2*CcCi*C

The solution to this system is []11211 cCC = []valuearbitary00 . Such a

solution means that ATF fails to extract two or more slices for this example. We are
unaware of any other technique allowing us to extract synchronization-free parallel-
ism available in this loop.

4 Extracting Synchronization-Free Trees

In order to extract synchronization-free trees of dependent operations described by
dependence relations, first of all we need to preprocess those relations so that we are
able to perform further calculations on them. Provided that each lower bound of loop
indices is non-negative, the algorithm of the preprocessing is the following.

Algorithm 1. Dependence relation preprocessing

Input: set S_IN := {Ri,j | i, j∈[1,q] } of dependence relations representing an SCC,
where values of i, j represent the statement identifiers and are increased in the order in
which statements appear in the source code; each Ri,j denotes the union of all the
relations describing dependences between statements i and j, q is the number of verti-
ces in the SCC; the number of loop indices, n.

Output: set of preprocessed dependence relations, S_OUT.

Method:

S_OUT:=S_IN;
foreach relation Ri,j ∈ S_OUT do

1. if the number of input and/or output tuple elements of a relation is fewer than n
then transform relation Ri,j so that each its input and output tuple has exactly n
elements, by inserting the value -1 at the rightmost positions of the tuples, i.e.,
the tuple of the form [e] := [e1 e2 … en-k], k≥1, substitute for the tuple

]1....11e...ee[

k

kn21 ��
�� 	� −−−− ;

2. insert at the rightmost position of each input and output tuples of Ri,j values of
i and j, respectively, i.e., transform Ri,j := {[e]→[e']} into Ri,j :={[e,i]→[e',j]}.

Let us note that if the loop body contains a single statement, then it is not necessary
to preprocess dependence relations because all of them describe self-dependences
between instances of the same statement and the size of input and output tuples of
each relation is the same.

The idea of the algorithm extracting trees is the following. First, using set S com-
prising all the preprocessed dependence relations extracted for a given loop, we calcu-
late a relation, R, being the union of all the dependence relations included in set S.
Next, we check whether R describes any common dependence destination, i.e., an
operation that is a destination of two or more dependences. If this is not the case, we

 Finding Synchronization-Free Parallelism Represented with Trees 189

can conclude that all slices are represented with trees. Then, we calculate set, Sources,
composed of all the ultimate dependence sources represented with R, and finally gen-
erate code scanning synchronization-free trees preserving all the dependences avail-
able in an original loop.

Algorithm 2. Extracting synchronization-free trees of dependent operations

Input: set S :={ R1, R2,..., Rn}, n¥1, of preprocessed dependence relations describing
an SCC.

Output: code scanning synchronization-free trees preserving all the dependences in
an original loop.

Method:
1. Calculate R := R1 ∪ R2 ∪ ... ∪ Rn.
2. Check whether R describes any common dependence destination as follows

2.1. find set CDD := {[e] : e = R(e') = R(e'') & e',e''∈ domain(R) & e'≠e''};
2.2. if set CDD is empty, then R does not describe any common dependence des-

tination, go to step 3. Otherwise the algorithm fails to extract synchroniza-
tion-free trees for the given set of dependence relations, the end.

3. Compute a set, Sources, including all ultimate dependence sources as the differ-
ence between the sets representing dependence sources and destinations, respec-
tively
Sources := domain R – range R.

4. Generate code scanning synchronization-free trees preserving all dependences of
an original loop of the form

genOuterLoops (in: Sources; out: OuterLoops, L_I);
 foreach I in L_I do

genWhile (in: OuterLoops, I; out: WhileLoop);

where:

• The function genOuterLoops(in: OperSet; out: Loops, VectorList) generates a set
of outer loop nests, Loops, to scan operations comprised in set OperSet, and re-
turns a list of parameterized iteration vectors VectorList, one vector I from list
VectorList corresponds to one outer nest of loops generated, i.e., the number of
elements in list VectorList is equal to the number of nests generated. Let us note
that in the general case, set Sources is a union of parameterized polyhedra whose
constraints are affine because the constraints of the result of the difference op-
eration on affine sets is also affine. Hence, any well-known technique can be
applied to implement the function genOuterLoops, e.g., those published in [12-
16]. All outer loops OuterLoops can be executed in parallel because they scan
independent sources of synchronization-free slices.

• foreach I in L_I do means “for each outer nest of loops generated by the

function genLoops and being associated with vector I from list L_I”.
• the function genWhile (in: OuterLoops, I; out: WhileLoop)

190 W. Bielecki et al.

1. generates code named WhileLoop of the form:
S' := I;

 while (S' ≠ Ø); {
 S_tmp := Ø;

(par)foreach I∈S' do /* “par” means that all elements of S' can be
executed in parallel because there are no dependences
among them*/

stk(I'); /* statement k of an original loop (k is defined by the
rightmost value of I) to be executed in the iteration given
by vector I' (I' is represented by the first n-1 values of I) */

 foreach i, i=1,2,..,n do
 if Ri(I') ∈ domain Ri then

 J := Ri(I); /* calculate a set of operations to be
 executed in the next iteration */

 Add J into S_tmp;
 end
 end
 end
 S' := S_tmp; }

2. Inerts code WhileLoop in the corresponding nest of loops OuterLoops.

Note that each while loop iteration executes all the operations whose operands
have already been calculated and prepares a set of operations to be executed at the
next iteration. That is, operations are executed as soon as their operands are available,
preserving in such a way all dependences exposed for an original loop. Such a sched-
ule (assigning a time of execution to each operation of the loop) is known to be free-
schedule [5].

5 Extracting Synchronization-Free Trees for the Motivating
Example

Analyzing Figure 1 representing dependences available in the loop of the motivating
example, we can see all synchronization-free slices are trees or chains (a chain is the
particular case of a tree). Because the body of the loop contains a single statement, the
preprocessing of dependence relations by means of Algorithm 1 is not necessary and
we omit this procedure. We apply Algorithm 2 and extract synchronization-free slices
as follows.

1. R := 1
1s,1sR ∪ 2

1s,1sR ={[i,1]→[2i,1]: 1≤i & 2i≤ n}∪{[i,j]→[i,j+1]:1≤i≤n &1≤j<n};

2. Set CDD is empty, we go to Step 3.
3. Sources := {[i,1]: Exists (alpha : 2alpha = 1+i && 1 <= i <= n, 2n-3)}.
4. Code generated can be represented by means of the following pseudocode

parfor(t=1; t<=min(n,2*n-3); t+=2) /* outer loop is generated by
 the Omega Calculator*/

 Finding Synchronization-Free Parallelism Represented with Trees 191

{ I=[t,1];
 Add I to S’; /* I is the source of a tree */
 while(S’!= Ø) {
 S_tmp=Ø;
 (par)foreach(vector I=[i,j] in S’) {
 s1(I); /* the original loop statement to be executed at iteration I */
 if(j==1 && 1<=i && 2*i<=n){/* if R1(I) ∈domain R1*/
 ip = 2*i; jp = 1; /* J= [ip,jp]=R1(I) */
 add J=[ip,jp] to S_tmp; }
 if(1<=i && i<=n && 1<=j&&j<n){ /*if R2(I)∈domain R2 */
 ip = i; jp = 1+j; /* J=[ip,jp]= R2(I) */
 add J=[ip,jp] to S_tmp; }
 }
 S’=S_tmp;
 }
}

6 Another Example

Let us consider another example, an imperfectly nested loop borrowed from [17] for
which well-known techniques fail to extract synchronization-free slices.

Example 2

 for (i=0;i<=n;i++)
 for (j=0;j<=n;j++)
 s1: x[i,j]=(i%2 ==0 ? x[i,j-1]: y[i-1,j])
 for j=n downto 0
 s2: y[i,j]=(i%2 ==0 ? x[i,j]: y[i,j+1])

Dependences (see Fig. 2) originated by this loop can be represented by the follow-
ing set of preprocessed relations

Rs1,s1 :={[i,j,1] → [i,j+1,1]: exists (k: 2*k=i & k≥0 & 0≤i≤n & 0≤j≤n-1)};
Rs1,s2 :={[i,j,1] → [i,j,2]: exists (k: 2*k=i & k≥0 & 0≤i≤n & 0≤j≤n)};
Rs2,s1 :={[i,j,2] → [i+1,j,1]: exists (k: 2*k=i & k≥0 & 0≤i≤n-1 & 0≤j≤n)};
Rs2,s2 :={[i,j,2] → [i,j-1,2]: exists (k: 2*k+1=i & k≥0 & 0≤i≤n & 1≤j≤n)}.

0 1 2 3 4 5 i

j

3

s1

s2

2

1

0

Sources of slices

Fig. 2. Dependences for Example 2

192 W. Bielecki et al.

Applying Algorithm 2, we get the following pseudocode

parfor(t=0; t<=n; t++)
{ if (intMod(t,2) == 0){
 I=[t,0,1]; /* I is a source of a tree */
 Add I to S';
 Exec(S'); } /* call function Exec() */
 if (intMod(t+1,2) == 0){
 I=[t,n,2]; /* I is a source of a tree */
 Add I to S';
 Exec(S'); }} /* call function Exec() */
void Exec (S'){
while((S'!= Ø)) {

 S_tmp= Ø;
 (par)foreach(I=[i,j,k] in S') {

if(k==1) /* execute the 1st statement of the orginal loop */
 x[i][j] = ((i%2) ==0) ? x[i][j-1] : y[i-1][j];

else if(k==2) /* execute the 2nd statement of the original loop */
 y[i][j] = ((i%2) ==0) ? x[i][j] : y[i][j+1];
 /* calculating vector J= (ip,jp,kp]) */
 if(k>=1&&k<=1&& i%2==0&&0<=i&&i<=n&&0<=j&&j<n) {
 /* if (R1,1(I) ∈domain R1,1) then do */
 ip = i; jp = 1+j; kp = k; /* J= R1,1(I) */
 Add J to S_tmp; }
 if(k<=1&&k>=1&&i%2==0&&0<=i&&i<=n&&0<=j&&j<= n) {
 /* if (R1,2(I) ∈domain R1,2) then do */
 ip = i; jp = j; kp = 1+k; /* J= R1,2(I) */
 Add J to S_tmp; }
 if(k<=1&&k>=1&&i%2==0&&0<=i&&i<=n&&0<=j&&j<= n) {

/* if (R2,1(I) ∈domain R2,1) then do */
 jp = j; ip = i+1; kp = k-1; /* J=R2,1(I) */
 Add J to S_tmp; }
 if(k<=1&&k>=1&&i%2==0&&0<=i&&i<=n&&0<=j&&j<= n) {

/* if (R2,2(I) ∈domain R2,2) then do */
 ip = i; jp = j-1; kp = k; /* J= R2,2(I) */
 Add J to S_tmp;} }
 S' = S_tmp;} }

7 Experiments

To evaluate the performance of code generated by the proposed approach, we have
developed a tool that implements the algorithms presented in this paper using the
Omega Project Software (Petit − for exposing dependence relations and the Omega
calculator − for the calculations envisaged by our algorithm). Applying this tool, we
have generated code for the loops of Example 1 (Section 3) and Example 2 (Section
6). Using the OpenMP API [18] to describe parallelism available in loops, we inserted
appropriate pragmas and clauses into the code generated. For these loops, we have

 Finding Synchronization-Free Parallelism Represented with Trees 193

carried experiments on the machine Intel Xeon 1.6 Ghz, 8 processors (2 x 4-core
CPU, cache 4 MB), 2 GB RAM, Ubuntu Linux. Table 1 presents the results where
the column “for” presents the execution time of an original loop (in seconds), the
column “while” presents the execution time of a while loop generated(in seconds), S
and E denote speed-up and efficiency, respectively. Let us recall that if T(P) is the
time required to complete the task on P processors, the speedup is the ratio
S=T(1)/T(P). Efficiency, on the other hand, is a measure of how much of available
processing power is being used: E = S/P = T(1) / (P * T(P)). Under our experiments,
T(1) is the time of the execution of a corresponding source “for” loop, while T(P) is
the time of the parallel execution of a corresponding “while” loop being produced
by our approach.

Table 1.

1 CPU 2 CPU 4 CPU 8 CPULoop n
for while S E S E S E

250 0,014 0,016 1,273 0,636 1,167 0,292 1,077 0,135
500 0,056 0,064 1,436 0,718 2,074 0,519 2,667 0,333

1000 0,224 0,257 1,659 0,830 3,027 0,757 4,148 0,519
1500 0,504 0,573 1,732 0,866 3,170 0,792 5,538 0,692

Ex. 1

2000 0,922 1,006 1,787 0,893 3,453 0,863 6,188 0,773
500 0,011 0,017 1,000 0,500 1,100 0,275 1,100 0,138

1000 0,045 0,063 1,216 0,608 1,607 0,402 1,731 0,216
2000 0,179 0,268 1,398 0,699 1,989 0,497 2,887 0,361
4000 0,717 0,964 1,428 0,714 2,464 0,616 4,006 0,501

Ex. 2

8000 2,856 3,834 1,453 0,727 2,589 0,647 4,916 0,614

From the results obtained, it may be deduced that on one CPU, there is no
considerable difference between the execution times of a source for loop and a
corresponding while loop generated by means of Algorithm 2. The performance of
code generated by Algorithm 2 depends considerably on the volume of calculations
executed by a slice (the product of the volume of calculations represented by the loop
statements and the number of the loop iterations). If this volume of calculations re-
sults in the time of calculations that is greater than time overhead (incurred by a while
loop generated by Algorithm 2 and threads management in a multiprocessor environ-
ment), we get positive speed-up (S>1) at running a generated parallel loop on a multi-
processor with shared memory.

8 Related Work

Unimodular loop transformations [2], permitting the outermost loop in a nest of loops
to be parallelized, find synchronization-free parallelism. But unimodular transforma-
tions can be applied only to perfectly-nested loops and do not allow such transforma-
tions as loop fission, fusion, scaling, reindexing, or reordering [1].

The affine transformation framework (polyhedral approach), considered in many
papers, for example, in papers [3,4,5,19,20,21] unifies a large number of previously
proposed loop transformations. However, it possesses a number of limitations

194 W. Bielecki et al.

preventing the extraction of all synchronization-free trees described with affine forms
(Example 2 in this paper) as well as it fails to extract synchronization-free trees de-
scribed with non-linear forms (Example 1 in this paper).

Paper [22] presents an approach to build free-schedules for extracting fine-grained
parallelism only, it does not concern extracting synchronization-free slices.

Our contribution consists in demonstrating how we can extract synchronization-
free slices of the tree topology and how to generate parallel code to scan operations of
a tree being described with non-linear forms.

9 Conclusion and Future Work

We introduced algorithms to extract coarse-grained parallelism being represented
with synchronization-free trees of dependent operations described with non-linear
forms. Such trees can be extracted for arbitrarily nested parameterized loops. Our
experiments demonstrate that we can reach positive speed-up of parallel code gener-
ated according to the presented algorithms on a multiprocessor with shared memory
when the time of the execution of computations represented by a slice is greater than
time overhead incurred by a while loop generated and treads management in a multi-
processor environment. Our future research direction is to derive techniques for ex-
tracting slices being represented not only by trees, but also by graphs of an arbitrary
topology.

References

1. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures, p. 790. Morgan
Kaufmann, San Francisco (2001)

2. Banerjee, U.: Unimodular transformations of double loops. In: Proceedings of the Third
Workshop on Languages and Compilers for Parallel Computing, pp. 192–219 (1990)

3. Feautrier, P.: Toward automatic distribution. Journal of Parallel Processing Letters 4, 233–
244 (1994)

4. Lim, W., Cheong, G.I., Lam, M.S.: An affine partitioning algorithm to maximize parallel-
ism and minimize communication. In: Proceedings of the 13th ACM SIGARCH Interna-
tional Conference on Supercomputing (1999)

5. Darte, A., Robert, Y., Vivien, F.: Scheduling and Automatic Parallelization, Birkhäuser
Boston (2000)

6. Pugh, W., Wonnacott, D.: Constraint-based array dependence analysis. ACM Trans. on
Programming Languages and Systems (1998)

7. Weiser, M.: Program slices: formal, psychological, and practical investigations of an
automatic program abstraction method, PhD thesis, University of Michigan, Ann Arbor,
MI (1979)

8. Weiser, M.: Program Slicing. IEEE Transactions on Software Engineering SE-10(7), 352–
357 (1984)

9. Pugh, W., Rosser, E.: Iteration Space Slicing and Its Application to Communication Opti-
mization. In: Proceedings of the International Conference on Supercomputing, pp. 221–
228 (1997)

 Finding Synchronization-Free Parallelism Represented with Trees 195

10. Kelly, W., Pugh, W., Rosser, E., Shpeisman, T.: Transitive Closure of Infinite Graphs and
its Applications. International Journal of Parallel Programming 24(6), 579–598 (1996)

11. Kelly, W., Maslov, V., Pugh, W., Rosser, E., Shpeisman, T., Wonnacott, D.: The omega
library interface guide, Technical Report CS-TR-3445, University of Maryland (1995)

12. Ancourt, C., Irigoin, F.: Scanning polyhedra with do loops. In: Proceedings of the Third
ACM/SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 39–
50. ACM Press, New York (1991)

13. Bastoul, C.: Code Generation in the Polyhedral Model Is Easier Than You Think. In: Pro-
ceedings of the PACT 13 IEEE International Conference on Parallel Architecture and
Compilation Techniques, Juan-les-Pins, pp. 7–16 (2004)

14. Boulet, P., Darte, A., Silber, G.A., Vivien, F.: Loop parallelization algorithms: from paral-
lelism extraction to code generation. Parallel Computing 24, 421–444 (1998)

15. Quillere, F., Rajopadhye, S., Wilde, D.: Generation of efficient nested loops from poly-
hedra. International Journal of Parallel Programming 28 (2000)

16. Vasilache, N., Bastoul, C., Cohen, A.: Polyhedral code generation in the real world. In:
Proceedings of the International Conference on Compiler Construction (ETAPS CC 2006).
LNCS, pp. 185–201. Springer, Vienna, Austria (2006)

17. Gupta, G., DaeGon, Kim, Sanjay, Rajopadhye, V.: Scheduling in the Z-Polyhedral Model.
In: Proceedings of IPDPS 2007 (2007)

18. http://www.openmp.org
19. Lim, W., Lam, M.S.: Communication-free parallelization via affine transformations. In:

Proceedings of the Seventh workshop on languages and compilers for parallel computing,
pp. 92–106 (1994)

20. Feautrier, P.: Some efficient solutions to the affine scheduling problem, part i, one dimen-
sional time. International Journal of Parallel Programming 21, 313–348 (1992)

21. Feautrier, P.: Some efficient solutions to the affine scheduling problem, part ii, multidi-
mensional time. International Journal of Parallel Programming 21, 389–420 (1992)

22. Beletskyy, V., Siedlecki, K.: Finding Free Schedules for Non-uniform Loops. In: Kosch,
H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 297–
302. Springer, Heidelberg (2003)

Lee-TM: A Non-trivial Benchmark Suite for

Transactional Memory

Mohammad Ansari, Christos Kotselidis, Ian Watson,
Chris Kirkham, Mikel Luján, and Kim Jarvis

School of Computer Science, University of Manchester
{ansari,kotselidis,watson,kirkham,lujan,jarvis}@cs.manchester.ac.uk

Abstract. Transactional Memory (TM) is a concurrent programming
paradigm that aims to make concurrent programming easier than fine-
grain locking, whilst providing similar performance and scalability. Sev-
eral TM systems have been made available for research purposes. How-
ever, there is a lack of a wide range of non-trivial benchmarks with which
to thoroughly evaluate these TM systems.

This paper introduces Lee-TM, a non-trivial and realistic TM bench-
mark suite based on Lee’s routing algorithm. The benchmark suite pro-
vides sequential, lock-based, and transactional implementations to
enable direct performance comparison. Lee’s routing algorithm has sev-
eral of the desirable properties of a non-trivial TM benchmark, such as
large amounts of parallelism, complex contention characteristics, and a
wide range of transaction durations and lengths. A sample evaluation
shows unfavourable transactional performance and scalability compared
to lock-based execution, in contrast to much of the published TM eval-
uations, and highlights the need for non-trivial TM benchmarks.

1 Introduction

Concurrent programming is a complex discipline known for its difficulty even
to obtain correct programs. Orchestrating lock acquisition and release between
multiple threads to ensure functionally correct execution is challenging and time-
consuming. Transactional Memory [1,2] (TM) is an alternative concurrent pro-
gramming paradigm that promises to abstract away the difficulties of managing
access to shared resources, but still maintain good scalability and performance.
With the growing need for widespread concurrent programming to take advan-
tage of multi-core processors [3], TM research has surged.

Following from database theory, TM guarantees atomicity, consistency, and
isolation among threads accessing shared structures, but abstracts away the de-
tails of how these guarantees are achieved. Programmers simply have to annotate
those parts of their code that access shared structures as transactions, and the
TM system automatically detects and manages access conflicts.

Recently, several Software TM (STM) systems have been proposed in the
literature that provide sufficient performance for use as research platforms such
as DSTM2 [4], McRT-STM [5], RSTM [6], tinySTM [7], and TL2 [8]. However,

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 196–207, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Lee-TM: A Non-trivial Benchmark Suite for Transactional Memory 197

there is a lack of non-trivial benchmarks with which to evaluate them, and with
which to evaluate novel TM ideas.

Lee-TM is a new non-trivial benchmark suite for TM systems based on the well
known Lee’s routing algorithm [9] used in circuit routing. Lee’s routing algorithm
has many of the desirable properties of a non-trivial TM benchmark such as large
amounts of parallelism, complex contention characteristics, and a wide range of
transaction durations and lengths. Lee-TM provides the following implemen-
tations of Lee’s routing algorithm: sequential, coarse-grain and medium-grain
locking, and transactional and optimized transactional. Lock-based implemen-
tations are provided to enable direct performance comparison with transactional
versions, and meaningfully measure the benefit of using TM.

The rest of this paper is organized as follows. Section 2 gives an overview of
TM and the desirable properties of non-trivial benchmarks. Section 3 describes
Lee’s routing algorithm, and Section 4 describes the implementations provided
by the Lee-TM benchmark suite. Section 5 presents a sample evaluation using
a state-of-the-art TM system. Section 6 describes related work, and Section 7
concludes this paper.

2 TM and Non-trivial Benchmarks

TM is a concurrent programming paradigm that aims to make parallel program-
ming as straightforward as programming with coarse-grain locks, but provide the
performance and scalability of fine-grain locks. TM requires a programmer to an-
notate those parts of their code that access shared structures as transactions, and
an underlying TM run-time automatically detects and manages access conflicts.
A transaction performs writes on shadow memory as the run-time maintains a
read set of accessed data, and write set of modified data. Access conflicts be-
tween concurrently executing transactions occur as read/write or write/write
conflicts to shared data, and are detected by the TM run-time by comparing the
read and write sets of all transactions. This validation of sets can be lazy (at
the end of a transaction’s execution its sets are compared against all others), or
eager (each read or write request is compared as it happens). When a conflict
is detected, it is necessary to abort (and restart) one of the conflicting transac-
tions. Contention management is invoked to make this decision, and there are
several contention management policies in the literature [10,11,12]. Only when
a transaction completes execution (i.e. commits), are the values in its write set
made visible to the rest of the program.

However, there is a lack of complex TM benchmarks with which to evaluate
TM systems, and it has been argued [13] that non-trivial, or realistic, benchmarks
are needed to further TM research (by studying their execution), and to present
the ‘real’ benefits of TM. Informally, the desirable features of a non-trivial TM
benchmark are:

– large amounts of potential parallelism
– difficult to fine-grain parallelize using locks (making TM attractive),

198 M. Ansari et al.

– based on a real-world application (giving confidence in TM),
– several types of transactions (several annotated code blocks),
– complex contention (amount of contention varies widely during execution),
– transactions with a wide range of durations (length), and
– transactions with a wide range of numbers of data accesses (size).

Recently, non-trivial TM benchmarks have become an active research area,
and a few non-trivial benchmarks have appeared in the literature [13,14] that
meet many of the characteristics mentioned above, and they are compared with
Lee’s routing algorithm in the related work (Section 6). Lee’s algorithm is pre-
sented in the next section.

3 Lee’s Routing Algorithm

Circuit routing is the process of automatically producing an interconnection
between electronic components. Lee’s routing algorithm is attractive for paral-
lelization as realistic circuits consist of thousands of routes, and each one can
potentially be concurrently routed. Table 1 presents key terminology used in
this paper. Lee’s routing algorithm connects a source grid cell to a target grid
cell in two phases: expansion and backtracking (Figure 1). Expansion performs a
breadth-first search from the source grid cell until the target grid cell is located,
or all cells have been visited. During the search each grid cell is checked that
it is not occupied, and then numbered by its distance from the source grid cell.
Occupied cells cannot be crossed directly, and routing must divert around them.

Table 1. Circuit routing terminology

Grid — represents abstractly the final printed circuit board on which all components
and routes will be placed. The grid can be multi-layered, permitting a 3D grid

Grid cell — a grid consists of indivisible grid cells.

Grid block — contiguous grid cells can be grouped into grid blocks.

Route — a list of grid cells that connects a source grid cell to a target grid cell.

Obstruction — a predefined grid block inaccessible for routing. Examples are electronic
components, mounting holes, servicing areas, etc.

Backtracking executes if expansion locates the target grid cell. Backtracking
starts at the target grid cell and iteratively finds a neighboring grid cell with a
lower number than its own and occupies it, until it reaches the source grid cell.

It is usual to perform routing in ascending order of length, i.e. shortest routes
first. This ensures that longer routes, which naturally have more alternatives, do
not displace shorter ones from their natural positions. This also minimizes the
number of unroutable routes; a desirable property for performance comparisons.

In addition, to achieve successful and realistic routing of the example circuits,
a certain amount of refinement in both the expansion and backtracking phases
of the algorithm have been added. These are concerned with constraining the

Lee-TM: A Non-trivial Benchmark Suite for Transactional Memory 199

Expansion phase from source grid Backtrack phase connecting target
cell S to target grid cell T. grid cell T to source grid cell S.

Fig. 1. Illustration of expansion and backtracking in Lee’s routing algorithm

routes in certain ways so that the routing does not generate a ‘spaghetti’ layout,
and their detail is omitted in this paper.

4 Lee-TM

Lee-TM is a benchmark suite that has five implementations of Lee’s routing
algorithm: sequential, coarse-grain and medium-grain lock-based, and transac-
tional and optimized transactional. They are named Lee-TM-seq, Lee-TM-cg,
Lee-TM-mg, Lee-TM-t, and Lee-TM-ter, respectively, and are described below.

4.1 Sequential (Lee-TM-seq)

First, the source and target grid cell coordinates of each route, and coordinates
for each obstruction, are read from a file. The obstructions are marked on the grid
immediately, whilst the source-target pairs are added to a work queue. The work
queue is then sorted in ascending route length order, as motivated in Section 3.

The main program loop gets a route from the work queue by calling the
function getNextRoute(), and then performs expansion and backtracking with
layNextRoute(). Expansion is performed by reading from a main grid and
writing the expansion values on a private temporary grid. If the expansion is
successful, the values in the temporary grid are used in backtracking, which
writes to the main grid. The program finishes when the work queue is empty.

4.2 Concurrent Implementations

Minimal changes are required to make Lee-TM-seq multi-threaded. Each thread
needs its own temporary grid, and the work queue needs to be synchronized to
ensure multiple threads do not get the same route. The single work queue could
become a bottleneck, but the experiments have not yet shown contention in its

200 M. Ansari et al.

access. Nonetheless, a future version of the benchmark will decentralize the work
queue. Finally, access to the main grid needs to be kept consistent, and this is
explained separately for each concurrent implementation below.

Coarse-Grain Lock-Based (Lee-TM-cg). Lee-TM-cg is simple: all threads
serialize on access to layNextRoute(). This prevents the main grid from being
read by a thread (expansion) while another thread is modifying it (backtracking),
which could lead to a race condition.

Medium-Grain Lock-Based (Lee-TM-mg). Lee-TM-mg splits the main
grid into as many equal-sized grid blocks as there are threads and associates a
lock with each grid block. For each route, if the source and target coordinates
are located in the same grid block, then the associated lock is requested, and
routing is performed. If the source and target coordinates are in different grid
blocks, then multiple alternatives are available.

A complex alternative for routes that span multiple grid blocks is to acquire
locks for all the necessary grid blocks. A priori, it is impossible to know which
grid blocks may be needed, thus requiring progressive lock acquisition. Without
a careful lock acquisition/release protocol in place, threads will deadlock. This
approach is applicable to fine-grain locking, and quickly shows how challenging
that would be to implement (consequently making TM attractive).

Instead, Lee-TM-mg adopts a simpler alternative where routes that do not fit
in a single grid block are added to a deferred work queue. Once the main work
queue is exhausted, the grid blocks are re-sized such that there are half as many
as before, and the deferred work queue is swapped with the main queue. As grid
blocks double in size at each swap of work queues, more routes can be laid. This
reduction of grid blocks continues until there is only one grid block for the whole
grid, at which point any existing route will definitely be routed or discarded (as
unroutable), albeit serially.

Transactional (Lee-TM-t). There is something naturally transactional about
circuit routing. Each route can be treated as an independent transaction. Each
routing transaction can perform its own expansion, backtrack, and then try to
commit the route it has found. If any of the grid cells used by the route have
concurrently been occupied and committed by another route, then the transac-
tion must be abandoned and restarted. However, it is important to realize that
now the detection of interference, abandonment and restarting are fundamental
functionality provided by TM. There is no need to program safe access to the
main grid explicitly as is required with the previous lock-based implementations.

Lee-TM-t is implemented in DSTM2 [4], a state-of-the-art Java STM imple-
mentation. DSTM2 transactional semantics require concurrently accessed data
to be annotated as transactional data. Since DSTM2 offers object-level conflict
detection the main grid was changed from a three dimensional primitive array
into a three dimensional transactional object array. This was the only change
needed to provide the equivalent of fine-grain locking, but using transactions.

Lee-TM: A Non-trivial Benchmark Suite for Transactional Memory 201

Optimized Transactional (Lee-TM-ter). Lee-TM-ter extends Lee-TM-t.
Watson et al. [15] studied Lee’s routing algorithm in an abstracted TM envi-
ronment. Their key insight was understanding that the expansion phase adds
unnecessary data to the read set, and that a transaction that generates a com-
plete route between a source point and a destination point simply needs in its
read set those grid cells that identify the complete route; no more, no less. They
suggested that using early release [16], which removes data from the read set
before any validation occurs, would optimize the read set and lead to dramati-
cally more exploitable parallelism. The optimized transactional implementation
provided by Lee-TM implements this approach.

4.3 Verifier

Lee-TM includes a verifier to check that all successful routes exist on the grid
when routing is complete. A verification error suggests either an error in the
code (if it has been changed) or in the TM system if executing transactional
implementations. This feature is useful when evaluating novel TM ideas, as subtle
errors in the TM system can be difficult to recognize from the, often large,
execution output of a non-trivial benchmark that has no verifier.

5 Workload Characterization

A sample evaluation using a state-of-the-art TM system, called DSTM2 [4], is
presented to highlight the value of Lee-TM. A discussion of the performance re-
sults is presented, followed by an investigation of the transactional characteristics
of Lee-TM’s transactional implementations to explain the observed performance.

5.1 Experimental Environment

The lock-based and transactional implementations provided by Lee-TM are com-
pared using one synthetic and two real circuit boards (Figure 2) — each circuit is
of size 600×600, and two layers. The workload characterization is performed on a
shared memory 8-core (i.e. 4 dual core) Opteron 2.4GHz machine running open-
SUSE 10.1 64-bit and Sun JDK 1.6 64-bit with flags -Xms1024m -Xmx4096m,
with 2, 4, or 8 threads. The transactional implementations are executed using
all contention management policies [10,11,12] provided with DSTM2, but results
are only shown for the Priority contention manager, as it had the best perfor-
mance overall. The Priority manager aborts younger transactions, i.e. those with
the most recent start time. Experiments are run three times and the best results
reported.

5.2 Sample Performance Evaluation

The first experiment employs a trivial synthetic circuit layout, shown in Figure 2a.
It contains 841 sparsely spaced short routes with no overlaps, i.e. 841 transactions

202 M. Ansari et al.

to commit, with no possible contention. The aim of this experiment is to present
baseline performance and scalability that can be achieved by lock-based and trans-
actional implementations.

Figure 2b shows the execution time to route the circuit simple. For Lee-TM-
cg there is no speedup regardless of the number of threads used. This occurs
since the the coarse-grain lock on the whole main grid effectively leads to se-
rial execution. Lee-TM-mg shows poor results initially, but has a speedup of
2.5 from 2 to 8 threads, and surpasses coarse-grain performance at 8 threads.
Lee-TM-mg shows poorer than expected results because the routes, all having
identical length, are ordered top-left to bottom-right, thus all threads are usually
attempting to acquire the same grid block lock. The transactional implementa-
tions perform best in all cases except at two threads, and scale well with a 3.4
fold speedup from 2 to 8 threads.

Figures 2c and 2e show two complex circuit called main and mem, respectively.
Both are microcode microprocessor layouts consisting of 1506 and 3101 routes,
i.e. transactions to commit, respectively, and were used in routing algorithm
research. The layouts contain a rich variety of route lengths and overlaps. Their
execution times are shown in Figures 2d and 2f, respectively.

Lee-TM-cg again shows no scalability regardless of the number of threads.
Lee-TM-mg has better initial performance than with the circuit simple because
it is less prone to the problem of route ordering, but shows worse scalability
with a speedup of only 1.2 from 2 to 8 threads. However, the most significant
outcome is that of the transactional implementations.

Lee-TM-t is consistently worse than both lock-based implementations by a
large margin. Even in the best case (at 2 threads) it is 3.8 times slower than
Lee-TM-mg, and the scalability is far worse than seen with the circuit simple,
with a speedup of only 1.16 from 2 to 8 threads. Lee-TM-ter performs 2-3 times
better than Lee-TM-t, and has a speedup of 2.15 from 2 to 8 threads, but is only
on par with Lee-TM-cg performance at 8 threads.

It is obvious that transactional performance and scalability seen in the circuit
simple has not been realized with the two more complex circuits. To better
understand the losses in performance, the next section analyzes profiled data to
characterize the transactional behavior of Lee’s routing algorithm.

5.3 Analysis of the Transactional Profile

Figure 3a shows the ratio of aborts to commits for each experiment. The experi-
ment with the circuit simple has no aborts by design, but the other two complex
circuits have an increasing ratio of aborts as the number of threads rises. The
benefit of early release is obvious as the ratio of aborts to commits falls dra-
matically for both main and mem, re-emphasizing the benefit of early release as
concluded by Watson et al. [15].

Figure 3b shows the percentage of time spent executing wasted work (aborted
transactions). Both main and mem show increasing amounts of wasted work
as the number of threads rises, but the wasted work for Lee-TM-t increases by
greater amounts. This helps explain difference in execution time between the two

Lee-TM: A Non-trivial Benchmark Suite for Transactional Memory 203

 0

 2

 4

 6

 8

 10

 12

 14

 16

2 4 8

T
im

e
(s

.)
Number of threads

Lee-TM-cg
Lee-TM-mg
Lee-TM-t
Lee-TM-ter

(a) Circuit simple. (b) Circuit simple execution times.

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8

T
im

e
(s

.)

Number of threads

Lee-TM-cg
Lee-TM-mg
Lee-TM-t
Lee-TM-ter

(c) Circuit main. (d) Circuit main execution times.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

2 4 8

T
im

e
(s

.)

Number of threads

Lee-TM-cg
Lee-TM-mg
Lee-TM-t
Lee-TM-ter

(e) Circuit mem. (e) Circuit mem execution times.

Fig. 2. Circuits used in the sample evaluation, and their execution times using lock-
based and transactional implementations

implementations: Lee-TM-t spends more time executing aborted transactions.
Since the ratios in Figure 3a correlate to those in Figure 3b, there may be benefit

204 M. Ansari et al.

2 threads
4 threads
8 threads

 0.00
 0.10
 0.20
 0.30
 0.40
 0.50
 0.60
 0.70
 0.80

m
ai

n
w

/t

m
ai

n
w

/te
r

m
em

 w
/t

m
em

 w
/te

r

R
at

io
 A

bo
rt

s/
C

om
m

its

2 threads
4 threads
8 threads

 0

 20

 40

 60

 80

 100

m
ai

n
w

/t

m
ai

n
w

/te
r

m
em

 w
/t

m
em

 w
/te

rPe
rc

en
ta

ge
 o

f
T

ot
al

 T
im

e
a) aborts per commit. b) wasted work.

Fig. 3. Transactional profiling data: a) shows the ratio of aborted transactions to com-
mitted transactions, b) shows the percentage of total execution time spent executing
aborted transactions (wasted work). Circuit simple is not shown as it has no aborts
or wasted work. Note: Lee-TM-t results have ‘w/t’ suffix, and Lee-TM-ter results have
‘w/ter’ suffix.

in attempting to detect doomed (to abort) transactions sooner, and abort them
early to reduce the amount of wasted work, and improve execution time.

Figure 4 shows the abort histograms for the circuits main and mem (the his-
tograms for the circuit simple have been omitted as it has no aborts). These
graphs show the count of routes aborted by a given number before finally com-
mitting, and present perhaps the most interesting results because the histogram
for Lee-TM-t indicates that a few routes take tens of aborted attempts before
committing. For circuit main at 8 threads, Lee-TM-ter commits all routes within
nine aborts each, while Lee-TM-t commits 26 routes with more than nine aborts
each (the abort profile of the circuit mem shows similar statistics). Although
this represents 1.7% of the routes (i.e. workload), it is almost solely responsible
for a 35% difference in wasted work between Lee-TM-t and Lee-TM-ter for the
circuit main at 8 threads. The large amount of aborts experienced by a small
number of transactions is another sign that the contention manager could be
enhanced to make better decisions, and thus may be an avenue to explore in
future work to reduce the amount of wasted work.

Finally, Table 2 shows the ratio of the average committed transaction read
set size in Lee-TM-t to Lee-TM-ter. The benefit of early release is significant in

Table 2. Ratio of avg committed transaction read set size in Lee-TM-t to Lee-TM-ter

simple main mem

2 threads 41 453 288
4 threads 41 342 226
8 threads 41 267 190

Lee-TM: A Non-trivial Benchmark Suite for Transactional Memory 205

0 aborts
1 abort
2 aborts
3 aborts
4−9 aborts
10−19 aborts
20−70 aborts

 0

 1

 10

 100

 1000

 10000

2 4 8

N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g

sc
al

e)

Number of threads

0 aborts
1 abort
2 aborts
3 aborts
4−9 aborts
10−19 aborts
20−70 aborts

 0

 1

 10

 100

 1000

 10000

2 4 8

N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g

sc
al

e)

Number of threads

a) main with Lee-TM-t. b) main with Lee-TM-ter.

0 aborts
1 abort
2 aborts
3 aborts
4−9 aborts
10−19 aborts
20−70 aborts

 0

 1

 10

 100

 1000

 10000

2 4 8

N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g

sc
al

e)

Number of threads

0 aborts
1 abort
2 aborts
3 aborts
4−9 aborts
10−19 aborts
20−70 aborts

 0

 1

 10

 100

 1000

 10000

2 4 8

N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

lo
g

sc
al

e)

Number of threads

c) mem with Lee-TM-t. d) mem with Lee-TM-ter.

Fig. 4. Abort histograms of routes in complex circuits main and mem. Circuit simple
is not shown as it has no aborts.

the execution of all three circuits, resulting in Lee-TM-ter’s read set shrinking
by at least 41 times over Lee-TM-t’s read set. Reducing the read set results in
faster execution time as it reduces cache thrashing.

6 Related Work

The lack of complex benchmarks for studying TM is a known issue. The major-
ity of benchmarks used in the evaluation of TM systems fit into the following
categories:

– micro-benchmarks, such as linked lists, and concurrent hash tables;
– benchmarks whose parallelism is already explicit and optimized, such as

JavaGrande, and SPECjbb; and
– benchmarks with limited concurrency, such as SPEC JVM98.

Apart from Lee-TM, few other benchmarks provide complex transactional
behavior. Those seen in the literature are STMBench7 [13], and the STAMP
benchmark suite [14]. STMBench7 is adapted from OO7, a database benchmark,
and has over 5000 lines of code. It simulates real-world scenarios by perform-
ing dynamic and complex modifications and traversals on a non-trivial shared
data structure. STMBench7 provides a coarse-grain and medium-grain locking

206 M. Ansari et al.

implementation for comparison with the transactional one. The STAMP bench-
mark suite consists of three benchmarks: genome (gene sequencing), kmeans (k-
clustering), and vacation (travel booking system). Each of these is over 1000 lines
of code, and is supplied with a transactional and a sequential implementation,
but no lock-based solution. Lee-TM has a smaller code base (<800 lines), yet pro-
vides complex transactional behavior through the complex circuits employed for
routing. Lee-TM has sequential, coarse-grain and medium-grain locking, trans-
actional, and optimized transactional (using early release) implementations.

Both STMBench7 and STAMP benchmarks (except for genome), due to the
nature of their computation, lack a verifier as there is no simple way to validate
the final data structure. Lee-TM comes with a verifier since it is easy to use the
original circuit layout data set and follow, for each route, from the source grid
cell to the target grid cell.

7 Summary

Lee-TM is a new benchmark suite based on Lee’s routing algorithm with sequen-
tial, lock-based, and transactional implementations. Lee’s routing algorithm pro-
vides many of the desirable properties of a non-trivial TM benchmark through
complex circuit layouts, such as large amounts of parallelism, complex contention
behavior, and large variety of transaction durations and sizes.

A sample performance evaluation using complex circuits, which had poten-
tial parallelism in the thousands, showed optimized transactional performance
only reaching par with coarse-grain locking at 8 threads, and never reaching
the performance of medium-grain locking. Unoptimized transactional execution
was, in the best case, four times slower than medium-grain locking. This result
highlights the need for complex benchmarks to stress TM systems.

The analysis of the transactional characteristics of Lee-TM’s transactional
implementations showered there is much work wasted in executing doomed (to
abort) transactions. At 8 threads, less than 2% of the transactions, due to being
aborted tens of times, resulted in unoptimized transactional execution having
35% more wasted work than the optimized transactional execution, and conse-
quently 2.7x slower execution time. The analysis identified contention manage-
ment as a target of future research to make better decisions that result in less
wasted work, and thus better performance.

References

1. Shavit, N., Touitou, D.: Software transactional memory. In: PODC 1995: Proceed-
ings of the 14th Annual ACM Symposium on Principles of Distributed Computing,
pp. 204–213. ACM Press (1995)

2. Herlihy, M., Eliot, J., Moss, B.: Transactional memory: Architectural support for
lock-free data structures. In: ISCA 1993: Proceedings of the 20th Annual Interna-
tional Symposium on Computer Architecture, pp. 289–300. ACM Press (1993)

3. Olukotun, K., Hammond, L.: The future of microprocessors. ACM Queue 3(7),
26–29 (2005)

Lee-TM: A Non-trivial Benchmark Suite for Transactional Memory 207

4. Herlihy, M., Luchangco, V., Moir, M.: A flexible framework for implementing soft-
ware transactional memory. In: OOPSLA 2006: Proceedings of the 21st Annual
Conference on Object-Oriented Programming Systems, Languages, and Applica-
tions, pp. 253–262. ACM Press (2006)

5. Saha, B., Ali-Reza Adl-Tabatabai, Hudson, R.L., Minh, C.C., Hertzberg, B.:
McRT-STM: a high performance software transactional memory system for a multi-
core runtime. In: PPoPP 2006: Proceedings of the 11th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, pp. 187–197. ACM Press,
New York (2006)

6. Marathe, V., Spear, M., Herio, C., Acharya, A., Eisenstat, D., Scherer III, W.,
Scott, M.: Lowering the overhead of software transactional memory. In: TRANS-
ACT 2006: First ACM SIGPLAN Workshop on Transactional Computing (June
2006)

7. Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation.
In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 284–298. Springer, Heidelberg
(2006)

8. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Dolev, S. (ed.) DISC
2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

9. Rubin, F.: The Lee path connection algorithm. IEEE Transactions on Comput-
ers C-23(9), 907–914 (1974)

10. Scherer III, W., Scott, M.: Contention management in dynamic software transac-
tional memory. In: CSJP 2004: Workshop on Concurrency and Synchronization in
Java Programs (July 2004)

11. Scherer III, W., Scott, M.: Advanced contention management for dynamic software
transactional memory. In: PODC 2005: Proceedings of the 24th Annual Symposium
on Principles of Distributed Computing, pp. 240–248. ACM Press (2005)

12. Guerraoui, R., Herlihy, M., Pochon, B.: Toward a theory of transactional con-
tention managers. In: PODC 2005: Proceedings of the 24th Annual Symposium on
Principles of Distributed Computing, pp. 258–264. ACM Press (2005)

13. Guerraoui, R., Kapa�lka, M., Vitek, J.: STMBench7: A benchmark for software
transactional memory. In: EuroSys 2007: Proceedings of the 2nd European Systems
Conference, pp. 315–324. ACM Press (2007)

14. Minh, C.C., Trautmann, M., Chung, J.W., McDonald, A., Bronson, N., Casper,
J., Kozyrakis, C., Olukotun, K.: An effective hybrid transactional memory system
with strong isolation guarantees. In: ISCA 2007: Proceedings of the 34th Annual
International Symposium on Computer Architecture, pp. 69–80. ACM Press, New
York (2007)

15. Watson, I., Kirkham, C., Luján, M.: A study of a transactional parallel routing
algorithm. In: PACT 2007: Proceedings of the 16th International Conference on
Parallel Architectures and Compilation Techniques, pp. 388–400. IEEE Computer
Society Press (2007)

16. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional
memory for dynamic-sized data structures. In: PODC 2003: Proceedings of the
22nd Annual Symposium on Principles of Distributed Computing, pp. 92–101.
ACM Press (2003)

Performance of OpenMP Benchmarks on

Multicore Processors

Ami Marowka

Shenkar College of Engineering and Design
12 Anna Frank, Ramat-Gan, 52526, Israel

amimar2@yahoo.com

Abstract. The appearance of Multicore processors brings high perfor-
mance computing to the desktop and opens the doors of mainstream
computing for parallel computing. This paradigm shift leads the inte-
gration of parallel programming standards for high-end shard-memory
machine architectures into desktop programming environments. In this
paper we present a performance study of these new systems. We evalu-
ate the performance of an OpenMP shared-memory programming model
that is integrated into Microsoft Visual Studio C++ 2005 and Intel C++
compilers on a multicore processor. We benchmarked using the NAS
OpenMP high-level applications benchmarks and the EPCC OpenMP
low-level benchmarks. We report the basic timings, scalability, and run-
time profiles of each benchmark and analyze the running results.

1 Introduction

For many years parallel computers have been used only by an exclusive scientific
niche. Only universities and research institutions backed by government budgets
or funded by multi-billion-dollar companies could afford to purchase state-of-the-
art parallel machines. Multiprocessor machines are very expensive and demand
expertise in system administration and programming skills. Parallel computing
therefore remains a specialized field of an exclusive community.

Now, two complementary technologies bring parallel computing to the desk-
top. On the hardware side is the multicore processor for desktop computers [1],
and on the software side is the integration of the OpenMP parallel programming
model into Microsoft Visual C++ 2005. These technologies promise massive
exposure to parallel computing that nobody can ignore, thus making a technol-
ogy shift unavoidable. Unfortunately, writing a parallel code is more complex
than writing a serial code [2]. Parallel programming is extremely difficult. This
is where the OpenMP programming model comes into the picture [3]. OpenMP
helps developers to create multithreaded applications more easily while retaining
the look and feel of serial programming.

The extra development effort and code complexity of parallel programming
give rise to an obvious question Is it worthwhile? The best way to answer
this question is by benchmarking. This paper presents a performance study
of OpenMP shared-memory programming model [3] that was integrated into

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 208–219, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Performance of OpenMP Benchmarks on Multicore Processors 209

Microsoft Visual Studio C++ 2005 and Intel C++ compilers on a multicore
processor. The benchmarking was conducted using the NAS OpenMP parallel
benchmark suite [4] with different sizes of input classes, and the EPCC OpenMP
directives benchmarks [7,12]. We report the basic timings, scalability, and run-
time profiles of each benchmark and analyze the running results.

The rest of this paper is organized as follows. In Sections 2, 3, and 4 we
provide brief overviews of the OpenMP, NPB benchmarks, and EPCC micro-
benchmarks respectively. Section 5 is an in-depth analysis of the benchmarks
results and Section 6 presents our conclusions.

2 OpenMP Programming Model

OpenMP is a tool for writing multi-threaded applications in a shared memory
environment [3]. It consists of a set of compiler directives and library routines.
The compiler generates a multi-threaded code based on the specified directives.
OpenMP is essentially a comparatively recent standardization SMP (Symmetric
Multi-Processor) development and practice. By using OpenMP, it is relatively
easy to create parallel applications in FORTRAN, C, and C++. Compiler and
third party applications support is becoming more common.

An OpenMP program begins with a single thread of execution called the master
thread. The master thread spawns teams of threads in response to OpenMP direc-
tives, which perform work in parallel. Parallelism is thus added incrementally: the
serial program evolves into a parallel one. OpenMP directives are inserted at key
locations in the source code. These directives take the form of comments in FOR-
TRAN and pragmas in C and C++. The compiler interprets the directives and
creates the necessary code to parallelize the indicated tasks/regions. The parallel
region is the basic construct that creates a team of threads and initiates parallel
execution. Most OpenMP directives apply to structured blocks, which are blocks
of code with one entry point at the top and one exit point at the bottom. The
number of threads created when entering parallel regions is controlled by the value
of the environment variable OMP NUM THREADS. The number of threads can
also be set by a function call from within the program, which takes precedence
over the environment variable.

3 NAS Parallel Benchmark

We used the NPB OpenMP-C benchmark suite to evaluate the OpenMP perfor-
mance on our dual-core computer. The NPB OpenMP version is based on NPB
2.3-serial version and was developed as part of the Omni project [6]. The NAS
Parallel Benchmarks (NPB) [4,5] was devised by the Numerical Aerodynamic
Simulation Program of NASA for the performance analysis of highly parallel
computers. The NPB are valuable since they are rigorous and close to real-life
needed applications. The NPB consist of five kernels and three simulated appli-
cations. They all compute or simulate different algorithmic and computational
aspects of aerodynamic applications. For most of the kernels it is possible to

210 A. Marowka

select the problem size. Sometimes the problem sizes are called: Class S or T
(12x12x12), Class W (24x24x24), and Class A 64x64x64). The following is a brief
description of the five kernels and the three applications we used in our work.

Kernel EP. In the embarrassing parallel benchmark, two-dimensional statis-
tics are accumulated from a large number of Gaussian pseudo-random numbers,
which are generated according to a particular scheme that is well suited for
parallel computation.

Kernel MG. The MG (Multi-grid) benchmark is a simplified multi-grid kernel,
which solves a 3-D Poisson PDE. The Class W problem uses the same size grid
as Class S but has a greater number of inner loop iterations.

Kernel CG. In the CG (Conjugate Gradient) benchmark, a conjugate gradi-
ent method is used to compute an approximation to the smallest eigen value
of a large, sparse, symmetric positive definite matrix. This kernel is typical of
unstructured grid computations applications.

Kernel FT. In the FT (3-D FFT PDE) benchmark, a 3-D partial differential
equation is solved using FFTs. This kernel performs the essence of many spectral
methods. This benchmark is somewhat unique in that computational library
routines may be legally employed.

Kernel IS. The IS (Integer Sort) benchmark tests a sorting operation that
is important in particle method codes. This type of application is similar to
particle-in-cell applications of physics, wherein particles are assigned to cells
and may drift out. The sorting operation is used to reassign particles to the
appropriate cells.

BT is a simulated CFD application that uses an implicit algorithm to solve
3-dimensional (3-D) compressible Navier-Stokes equations. The finite differences
solution to the problem is based on an Alternating Direction Implicit (ADI) ap-
proximate factorization that decouples the x, y, and z dimensions. The resulting
systems are Block-Tridiagonal of 5X5 blocks and are solved sequentially along
each dimension.

SP is a simulated CFD application that has a similar structure to BT. The
finite differences solution to the problem is based on a Beam-Warming approx-
imate factorization that decouples the x, y, and z dimensions. The resulting
system has Scalar Pentadiagonal bands of linear equations that are solved se-
quentially along each dimension.

LU is a simulated CFD application that uses the symmetric successive over-
relaxation (SSOR) method to solve a seven-block-diagonal system resulting from
finite-difference discretization of the Navier-Stokes equations in 3-D by splitting
it into block Lower and Upper triangular systems.

4 EPCC Microbenchmarks

The EPCC micro-benchmark suit is a set of benchmarks that measure the
overhead incurred by OpenMP compiler directives of a specific OpenMP

Performance of OpenMP Benchmarks on Multicore Processors 211

implementation [7,12]. Three classes of overhead can be measured by the EPCC
micro-benchmark suit: synchronization, loop scheduling, and array operations.
The current release supports the OpenMP 2.0 standard. The overhead cost in-
curred by a specific compiler directive is measured by comparing the sequential
execution time of a section code containing the compiler directive, and the par-
allel execution time of the same code. The measurements are repeated a few
times for statistical stability. By using the EPCC micro-benchmark, the devel-
oper is able to compare the relative efficiency of different implementations of
OpenMP running on the same platform; choose the more efficient construct of
two semantically equivalent; and predict the overall performance of an appli-
cation. Although there are other tools in the market that were developed for
similar purposes as EPCC, such as ompP [10] and Sphinx [13], EPCC software
is considered the de-facto standard of its kind.

5 Experimental Results

We tested the performance of the EPCCmicro-benchmarks and the NAS OpenMP
kernels and applications on dual-core computers based on Intel Pentium D820 2.80
GHz with 2 X 1MB L2 cache, 2 X 16KB L1 cache and 512MB main memory, and
Intel Core 2 Duo processor 1.86Ghz E6300, 4MB shared L2 cache, 2 X 32KB L1
cache and 1GB main memory. On the software side we used the OpenMP version
2.0 of Intel C++ OpenMP compiler 9.1 under the XP operating system. All the
benchmarks were also compiled by Microsoft Visual Studio C++ 2005 and evalu-
ated on the above dual-coremachines. However, the differences between the results
obtained by using the Microsoft and Intel compilers are negligible, so they are not
shown here. Only the results obtained by Intel compiler are shown here.

First, we measured the overhead cost of the OpenMP directives by using the
EPCC micro-benchmarks. In general, it is an important practice to start paral-
lel application benchmarks by examining on the testbed machine the overhead
incurred by the primitive functions used by the programming model for paral-
lelism. This way the programmer has a priori knowledge of the effects of various
possible overhead sources on the total performance of the applications. Figures
1, 2, 3, and 4 show results measured on the Intel Pentium D and Intel Core 2
Duo machines while running EPCC micro-benchmarks compiled by Intel C++
compiler 9.1.

Figure 1 depicts the OpenMP synchronization overheads measured by running
the EPCC micro- benchmarks with two threads. First, it can be observed that
the overhead cost is less than 20 microseconds in all cases. This low overhead has
a negligible effect on the NAS applications performance that will be discussed
later. Second, the OpenMP directive overheads on Intel Core 2 Duo are up to
50% less than the overheads incurred by the directives on Intel Pentium D. This
improvement is mainly due to the L2 cache memory architecture of the Core
2 Duo processor. We will elaborate on this architecture later. Third, we also
mesuared the directive overhrads by running the EPCC benchmarks with one
and four threads (the results are not shown here). we found that the overhead of

212 A. Marowka

0

2

4

6

8

10

12

14

16

Tim
e (u

sec
)

Pa
ral

lel Fo
r

Pa
ral

lel-
Fo

r

Ba
rrie

r

Sin
gle

Cri
tica

l

Lo
ck-

Un
loc

k

Ord
ere

d

Ato
mic

Re
du

ctio
n

Pentium D

Core 2 Duo

Fig. 1. OpenMP Synchronization overheads of two threads on Intel Pentium D and
Intel Core 2 Duo machines

a single core is relatively high. Thus, it is better for single threaded applications
to be compiled with the OpenMP option set to off. Moreover, the overhead in the
case of a single thread is usually the same as in two threads, while in the case of
four threads the overhead usually increases dramatically due to the competition
of two threads on a single core.

Further analysis of the results leads to the following conclusions: the combined
directive Parallel-For is more efficiently used than the Parallel and For directives,
which are used separately; it costs less to use the Critical directive than to use the
Lock-Unlock pair directives; the Barrier and Single directives have a relatively
low overhead; the Order and Reduction clauses have a relatively high cost, as can
be expected; and, finally, the overhead of Atomic directive is negligible and thus
is recommended for use, where possible, instead of the Critical or Lock-Unlock
directives. We omit the discussion on scalability with respect to the number of
cores because it is useless to do such an analysis when the machines have only
two cores.

Figure 2 depicts the Array (or privatization) overheads of four clauses: Pri-
vate, Firstprivate, CopyPrivate, and Copyin for 2 threads on Intel Pentium D
and Core 2 Duo machines. First, it can be observed again that Intel Core 2 Duo
processor presents lower overheads than Pentium D processor. Moreover, the re-
sults show that the Private, Firstprivate, and Copyin clauses are incurred similar
and acceptable overhead cost (15 µs and 8 used for Pentium D and Core 2 Duo
respectively) for the array allocation process. The CopyPrivate demonstrates
excellent performance and a negligible overhead cost that enables super-efficient
inter-threads communication.

Figures 3 and 4 describe the OpenMP loop scheduling overheads of the Static,
Dynamic, and Guided clauses for chunk sizes of 1 to 128 when running with two

Performance of OpenMP Benchmarks on Multicore Processors 213

0

2

4

6

8

10

12

14

16

Tim
e (u

sec
)

Pri
vat

e

Fir
stP

riv
ate

Co
py-

Pri
vat

e

Co
pyi

n

Pentium D
Core 2 Duo

Fig. 2. OpenMP Array Scheduling (privatization) overheads of two threads on Intel
Pentium D and Intel Core 2 Duo machines

threads, for Core 2 Duo and Pentium D machines respectively. It can be observed
that each clause has a different pattern. In the case of Pentium D, the block cyclic
scheduling (Static) presents similar overhead (∼ 5.8 µs) for all chunk sizes. The
Dynamic scheduling is decreases rapidly from the maximum point at a chunk
size of one (32.21 µs) to the minimum at a chunk size of 128 (6.80 µs). The
Guided scheduling has a similar pattern but with a more moderate decreasing
curve. The maximum point is at a chunk size of one (9.51 µs) and the minimum
point is at a chunk size of 128(3.18 µs). The conclusion is that by increasing the
chunk size the loop scheduling overhead is minimized.

In the case of Core 2 Duo, the loop scheduling overheads present similar
pattern compare to Pentium D, but the overheads are up to 50% lower than those
of Pentium D. The block cyclic scheduling (Static) is reach its optimal overhead
at a chunk size of eight (2.47 µs). The Dynamic scheduling is decreases rapidly
from the maximum point at a chunk size of one (20.21 µs) to the minimum at
a chunk size of 64 (3.32 µs). The Guided scheduling has a similar pattern but
with a more moderate decreasing curve. The maximum point is at a chunk size
of one (4.59 µs) and the minimum point is at a chunk size of 128(3.35 µs).

The bottom line of the EPCC micro-benchmarks results is that the overhead
incurred by the OpenMP directives and clauses are low and will not harm the
performance of the NBP application benchmarks.

The NPB benchmarks were conducted with three different input sizes: S, W,
and A for two threads. The total running time of each benchmark was measured
by wall-clock time. The speedup, efficiency, and the overhead of each run were
calculated as follows:

Speedup = T1/Tp,k. Where T1 is the time measured for running with single core
and Tp,k the time measured with p cores and k threads.

214 A. Marowka

0

5

10

15

20

25

30

35

Tim
e (u

sec
)

Sta
tic

Dy
nam

ic

Gu
ide

d

2 Threads

- 1 2 4 8 16 32 64 128

Fig. 3. OpenMP Loop Scheduling overheads of two threads on Intel Pentium D machine

Efficiency = T1/(p · Tp). Where T1 is the time measured for running with single
core and Tp the time measured with p cores.

Overhead = Tp,k−T1/p. Where T1 is the time measured for running with single
core and Tp,k the time measured with p cores and k threads.

We ran the original benchmarks that appear in [6] without any modification.
Due to space limitations, we present here only the running results where 2 cores
were used, with 2 threads and input class W (24x24x24). However, the behavior
of the benchmarks results for input classes S and A are similar to input class
W. The results of the IS kernel are omitted due to a problem known to the
developers of the benchmarks suit, which they will fix in the next release.

Table 1 presents the NPB efficiency as calculated from the total execution
time and the overhead time (in seconds) when running on top of Pentium D
machine for the class W of the seven different benchmarks in the NAS OpenMP
suite. The results obtained with Core 2 Duo machine are very similar and are
not shown here.

Figure 5 plots the calculated speedup of the NPB benchmarks, for the case
of 2 threads, on Pentium D and Core 2 Duo machines. Figure 6 is a bar graph
that depicts the percentage of the computation time and the overhead time as
part of the total execution time, in the case of Pentium D machine.

Analysis of these results leads to the following findings:
The EP Kernel falls into the category of applications termed “embarrassingly

parallel” based on the trivial partition ability of the problem, while incurring
no data or functional dependencies, and requiring little or no communication
between processors. It is included in the NPB suite to establish the reference
point for peak performance on a given platform. Therefore, it is not surprising
that EP achieved perfect speedup and efficiency (2.05 and 1.03 respectively) in
the case of Pentium D.

Performance of OpenMP Benchmarks on Multicore Processors 215

0

5

10

15

20

25

Tim
e (u

sec
)

Sta
tic

Dy
nam

ic

Gu
ide

d

2 Threads

- 1 2 4 8 16 32 64 128

Fig. 4. OpenMP Loop Scheduling overheads of two threads on Intel Core 2 Duo ma-
chine

As can be observed from Figure 5, the speedups of Pentium D and Core 2
Duo machines are similar, and thus the following discussion is true for the case
of Core 2 Duo although the numbers are of Pentium D case. The LU decom-
position application shows good speedup and efficiency for two cores, 1.88 and
0.94 respectively, but in the case of 4 threads the speedup drops drastically to
0.17. The MG Kernel rigorously exercises both short and long distance commu-
nication, although the communication patterns are highly structured. The MG
kernel shows more modest speedup (1.45) and efficiency (0.73) for 2 threads
while for 4 threads the speedup drops to 0.87.

The rest of the benchmarks (FT, MG, CG, BT, and SP) show poor speedups
and efficiencies. These results can be explained by the logical structure of the
application, which does not match the underlying architecture of the dual-core
processor. For example, the FT kernel uses FFT on a complex array to solve a
three-dimensional partial differential equation. Communication patterns in this
kernel are structured and long distance in nature and this benchmark represents
the essence of many ”spectral” codes or eddy turbulence simulations. The CG
kernel is used in conjugate gradient methods to approximate the smallest eigen-
value of a symmetric, positive definite, sparse matrix with a random pattern
of non-zeros. The communication patterns in this kernel are long- distance and
unstructured.

These observations reveal the following conclusions. First, all the benchmarks,
except EP, achieve very poor efficiency when the number of threads (4) is greater
than the number of cores (2). It happens because the overhead caused by context-
switch operations of the competing threads on the CPU resources is high. More-
over, two threads sharing a single core lead to cache conflicts that decrease the
hit rate and thus degrade the performance.

216 A. Marowka

0

0.5

1

1.5

2

2.5

Sp
eed

up

EP FT MG CG BT SP LU

Benchmarks

Pentium D

Core 2 Duo

Fig. 5. NPB speedup results of EP, FT, MG, CG, BT, SP, and LU benchmarks for 2
cores; 2 threads; problem class W; on Pentium D and Core 2 Duo machines

The above poor performance of the NPB applications brought us, on the one
hand, to extend our study further and to look for possible solutions to improve
the performance but without restructuring the application programs, and on the
other hand, to extend our understanding of how the underlying hardware works.

The Intel Pentium D processor has a different cache-memory architecture than
Intel Core 2 Duo processors [8,9]. The Pentium D 820 processor is a “distributed”
cache-memory with two separately L1 caches of 16KB each and two separately
L2 caches of 1MB each. One the other side, The Core 2 Duo E6300 is a “shared”
cache-memory with two separate L1 caches of 32KB each and a shared L2 cache
of 4MB. To understand the implications of these two different architectures on
the performance, lets look at the following example.

Let A[100] be a shared array used by two threads running on two different
cores. The threads are writing the array at the same time. One thread accesses
the first part of the array, A[0-49], and the second one accesses the second half of
the array, A[50-99]. In the case of the Pentium D, array A will be copied into the
L1 and L2 caches of each core. Now, each time one of the threads completes a
write operation, there is a need to update the copy of array A in the neighboring

Table 1. NPB efficiency and overhead time of EP, FT, MG, CG, BT, SP, and LU
benchmarks for 2 cores, 2 threads, and problem class W

EP FT MG CG BT SP LU

Run Time(s) 12.26 0.90 0.61 0.78 15.10 52.31 13.26

Overhead(s) 0.02 0.45 0.16 0.34 4.46 34.67 0.78

Efficiency(s) 0.99 0.5 0.73 0.56 0.7 0.66 0.94

Performance of OpenMP Benchmarks on Multicore Processors 217

0%

20%

40%

60%

80%

100%

EP FT MG CG BT SP LU
Benchmarks

Computation Overhead

Fig. 6. NPB computation time vs. overhead time of EP, FT, MG, CG, BT, SP, and
LU benchmarks for 2 cores, 2 threads and class W on Pentium D machine

core in order to maintain the caches consistency. This update is costly in terms
of CPU cycles, as can be seen in Table 2. However, we expected an improvement
in the case of Core 2 Duo processor because the L2 cache is shared, but we were
disappointed to discover that NBP benchmarks showed only ∼ 4% improvment
(in the case of FT. MG and SP) and ∼ 4% worsening (in the case of CG, BT
and LU).

So, we continued to explore further and we found another obstacle that we
were not aware of: the shared L2 cache of the Core 2 Duo is not banked. The
L2 cache serves only one core at any given clock cycle, so a banked organization
will not help. A round robin scheme is used to allocate L2 cache services to the
cores for scenarios when both cores request L2 service. The false sharing penalty
of the Core 2 Duo is depicted in Table 2 and was taken from [9].

We looked further for optimization possibilities for improving the performance
of the applications but without need to rewritten the programs.

First, we used a thread affinity option to tie a thread to its data to improve
data locality [11]. Since OpenMP does not support thread affinity capabilities we
used the Windows operating systems SetThreadAffinityMask option. Monitoring
the threads scheduling by the Intel VTune performance analyzer confirmed that
each thread was tied to one core during the program execution. Unfortunately, we
did not observe any improvement in the performance of the applications. Second,
we changed the loop iterations scheduling by using the OpenMP schedule clause.
The fact that most of the parallelism of the NPB applications is done by for
work-sharing, encouraged us to find the optimal scheduling. We tried the Static,
Dynamic, and Guided options with 1, 4, 8, 16, 32, 64, and 128 chunk sizes.
Unfortunately, we cannot report any significant improvement in applications
performance.

218 A. Marowka

Table 2. False sharing penalties

Case Data Location Latency(cycles/nsec)

L1 to L1 Cache L1 Cache 14 core cycles + 5.5 bus cycles

Through L2 Cache L2 Cache 14 core cycles

Through Main 14 core cycles + 5.5 bus cycles
Memory Memory + 40-80 nsec

6 Conclusions

Multicore processors will dominate scientific computing, and commercial com-
puting as well, in the near future. Understanding their performance character-
istics is essential for design scalable and efficient applications. In this paper, we
presented the scalability and efficiency of applications from NPB OpenMP-C
suite and the overhead measurements of OpenMP directives and clauses run-
ning on Intel Pentium D, and Core 2 Duo machines using MS Visual studio
C++ 2005 and Intel C++ compilers.

The benchmarking results show that most of the applications do not scale well,
not because of the overhead incurred by the OpenMP directives, but because the
NPB applications induced computation and communication patterns which are
not cache friendly and result in a lot of false sharing situations. The diversified
cache architectures of multicore processors call for new parallel programming
languages and compilers that can use the hierarchy of cache memory systems in
an efficient manner.

References

1. Geer, D.: Chip makers turn to multicore processors. IEEE Computer (May 2005)
2. Marowka, A.: Parallel Computing on Any Desktop. Communication of ACM 50(9),

74–78 (2007)
3. OpenMP Application Program Interface, http://www.openmp.org
4. Bailey, D.H., Harsis, T., Saphir, W., der Wijngaart, R.V., Woo, A., Yarrow, M.: The

NAS Parallel Benchmarks 2.0. Report NAS-95-020, Nasa Ames Research Center
(December 1995)

5. Jin, H., Frumkin, M., Yan, J.: The OpenMP Implementation of NAS Parallel
Benchmarks and Its Performance. Report NAS-99-011, Nasa Ames Research Cen-
ter (October 1999)

6. The Omni Project, http://phase.hpcc.jp/Omni/home.html
7. Mark Bull, J.: Measuring Synchronisation and Scheduling Overheads in OpenMP.

In: Proceeding of First European Workshop on OpenMP (EWOMP 1999), Lund,
Sweden (October 1999)

8. Doweck, J.: Inside Intel Core Micro architecture and Smart Memory Access. A
White Paper, Intel (2006)

9. Mendelson, A., Mandelblat, J., Gochman, S., Shemer, A., Chabukswar, R.,
Niemeyer, E., Kumar, A.: ICMP Implementation in Systems Based on the Intel
Core Duo Processor. Intel Technology Journal 10(02) (May 15, 2006)

http://www.openmp.org
http://phase.hpcc.jp/Omni/home.html

Performance of OpenMP Benchmarks on Multicore Processors 219

10. Furlinger, K., Gerndt, M., Dongarra, J.: Scalability Analysis of the SPEC OpenMP
Benchmarks on Large-Scale Shared Memory Multiprocessors. In: Proceeding of
ICCS 2007 (2007)

11. Tian, T.: Tips for effective usage of the shared cache in multicore architectures.
Embedded.com, Jaunyary 23 (2007),
http://embedded.com/showArticle.jhtml?articleID=196902691

12. Bull, J.M., O’Neill, D.: Microbenchmark Suite for OpenMP 2.0. In: Proceedings
of the Third European Workshop on OpenMP (EWOMP 2001), Barcelona, Spain,
pp. 41–48 (September 2001)

13. Sphinx Micro-benchmark Suite,
http://www.llnl.gov/CASC/RTS Report/sphinx.html

http://embedded.com/showArticle.jhtml?articleID=196902691
http://www.llnl.gov/CASC/RTS_Report/sphinx.html

Adaptive Loop Tiling for a Multi-cluster CMP

Jisheng Zhao, Matthew Horsnell, Mikel Luján, Ian Rogers,
Chris Kirkham, and Ian Watson

University of Manchester, UK
{jishengz,horsnell,mikel,irogers,chris,watson}@cs.man.ac.uk

Abstract. Loop tiling is a fundamental optimization for improving data
locality. Selecting the right tile size combined with the parallelization of
loops can provide additional performance increases in the modern of Chip
MultiProcessor (CMP) architectures. This paper presents a runtime op-
timization system which automatically parallelizes loops and searches
empirically for the best tile sizes on a scalable multi-cluster CMP. The
system is built on top of a virtual machine and targets the runtime paral-
lelization and optimization of Java programs. Experimental results show
that runtime parallelization and tile size searching are capable of im-
proving performance for two BLAS kernels and one Lattice-Boltzmann
simulation, despite overheads.

Keywords: Multi-Cluster CMP, Automatic Parallelization, Loop Tiling,
Feedback-Directed Optimization.

1 Introduction

The tiling of loop iteration spaces is among the most popular and most extensvely
studied automatic program optimization for improving data locality and cache
performance [17,6]. Selecting a suitable tile size is a critical step for improving
performance. Some approaches have been proposed to calculate an optimal tile
size for single processor architectures[7,13].

In the context of CMPs [9,12] and automatic parallelization, selecting the
tile size not only affects cache performance but also the load balance among
processors. For example, consider a 2-dimensional perfectly nested loop with a
square N ×N iteration space for which the optimal tile size is N

3 × N
3 for a given

CMP using only one processor. When 4 processors are used in that CMP, load
imbalance will occur using the same tile size; 9 tiles divided among 4 processors
results in one processor receiving one extra tile.

Runtime optimization systems have the advantage of being able to observe
the behavior of an executing application, whereas static compilers rely on pre-
dicting that behavior. Due to the limited amount of information available to a
static compiler, optimizing parallel loop tiling for large CMP architectures can
only become more and more complex. Performing runtime empirical searches,
however, provide an alternative approach to improve the parallel execution of a
program on different configurations of a CMP architecture.

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 220–232, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Adaptive Loop Tiling for a Multi-cluster CMP 221

Based on our previous research [19], at runtime it is feasible to automatically
parallelize loops and also empirically search for adequate loop tiling sizes in CMP
architectures with acceptable overheads. In this paper we concentrate on multi-
cluster CMPs and whether adequate loop tiling sizes can be found at runtime for
the automatically parallelized loops. As explained in further details in Section 2,
processors are grouped together into clusters and the cache hierarchy is split into
multiple levels which either connect the processors within a cluster or connect
sets of clusters. The JAMAICA multi-cluster CMP [10] (see Figure 1) contains
private L1 and multiple shared L2 caches. The L2 cache is unified containing
both data and instructions, further complicating predictions as to how much
space is available to data alone.For a multi-cluster CMP system which connects
all the clusters by the L2 cache bus, the data locality in each L2 cache determines
significantly the runtime performance. This paper investigates optimizations that
search for multiple tile sizes to best utilize two levels of on-chip caching in a
multi-cluster CMP, using runtime information to drive the search algorithm, in
conjunction with an Online Tuning Framework (OTF) [19]. To exploit the cache
hierarchy and the cluster structure two tile sizes need to be determined. The
runtime tuning mechanism applies loop tiling recursively to target both clusters
and cache levels.

The remainderof thepaper is organizedas follows.Section2givesabriefoverview
of the JAMAICA multi-cluster CMP architecture used in this paper. Section 3 de-
scribes the OTF and proposes the runtime tuning mechanism for optimizing the
multiple tile sizes. Section 4 describes the experimental methodology. Section 5
presents and discusses the results from experimental evaluation. Section 6 presents
related work, while a summary of the paper is presented in Section 7.

Fig. 1. JAMAICA: a multi-cluster CMP architecture

2 JAMAICA Multi-cluster CMP Architecture

To increase the ability of the JAMAICA architecture [2] to scale with the ad-
dition of more processings the single shared bus architecture is replaced by a
scalable multi-level cache hierarchy [10] (shown in Figure 1).

222 J. Zhao et al.

The multi-level hierarchy is constructed by dividing the total number of pro-
cessors into clusters. Each cluster contains a number of processing cores con-
nected to a shared L2 cache. Each shared L2 cache is connected to a global
on-chip memory network. This hierarchical approach can allow many more cores
to be integrated onto a single chip, whilst maintaining shared memory, limiting
the span of each interconnect to reduce the effects of cross-chip wire-delay, and
with minimal design complexity.

Each intra-cluster network is independently arbitrated and accessed concur-
rently allowing the cores within each cluster to access the larger cluster-shared
cache with less contention. The scalability comes at the expense of maintaining
cache inclusion and the additional latency of sharing data between clusters. Such
a hierarchy may be used to exploit an ever increasing transistor budget and as
such is a feasible approach for future architectures.

3 Online Tuning Framework

The Online Tuning Framework (OTF) infrastructure, initially developed for
CMP loop optimizations [19], performs automatic parallelization and enables
runtime empirical search. It consists of three distinct elements: the Loop Paral-
lelizing Compiler (LPC), the adaptive optimization component (see Section 3.1),
and the runtime profiler (see Section 3.2).

The OTF is embedded within the adaptive optimization system (AOS) of
the Jikes Research Virtual Machine (RVM) [4]. The Jikes RVM captures run-
time information by instrumenting the running code at the method-level. Once
the instrumentation indicates that a given method is hot (i.e. the number of
times the method is executed is above a threshold), the AOS makes a deci-
sion whether to compile it using an optimizing compiler [5]. The OTF hijacks
this decision, so that hot methods are also considered for parallelization by the
LPC. The parallelized loop is reconstructed as a thread body which will be dis-
patched by a thread dispatcher method, as shown in Figure 2 (a). The procedure
loadConfiguration loads the runtime configuration parameters (e.g. the loop
tile size) from an AOS database. The forkThreads and joinThreads method
calls create and synchronize those threads executing in parallel the loop body.
The aosProcess is used to perform runtime tuning (see Figure 2 (b)).

void threadDispatcherWithProfile(... ...) {
 long startCycle = getTimeBase();
 loadConfiguration();
 forkThreads()

 joinThreads()
 long executionCycle = getTimeBase() - startCycle;
 // Searching and Reconfiguration
 aosProcess(executionCycle, numIterations);
}

void threadDispatcher(... ...) {
 loadConfiguration()
 forkThreads()

 joinThreads()
}

(a) (b)

Fig. 2. Runtime profiling mechanism

Adaptive Loop Tiling for a Multi-cluster CMP 223

3.1 Adaptive Optimization Component

The Adaptive Optimization Component (AOC) applies one or more optimiza-
tions deemed to improve a loop identified by the LPC. Presently, the AOC
supports several adaptive optimizations for parallelizable code, although only
adaptive tiling is described in this paper.

Adaptive tiling is applied when a perfectly nested loop is identified by the
LPC. In the current implementation, 2-dimensional loop traversals of the itera-
tion space are divided into tiles which are then distributed among automatically
generated parallel threads. We extend the basic empirical search algorithm [19]
to vary the number of loop iterations inside each tile for the clusters and lev-
els of the memory hierarchy. These parameters directly impact the balance be-
tween costs associated with thread management, the cache efficiency, and system
load. As illustrated in Figure 3, the runtime reconfigurable parameters L1T ile x,
L1T ile y, L2T ile x and L2T ile y are tuned using runtime empirical search. Note
the parameters cluster x and cluster y in the two most outer loops. These divide
the iteration space among processor clusters. However, these are not part of the
search directly as they are determined indirectly by L2T ile x and L2T ile y. The
JAMAICA multi-cluster CMP architecture provides a cluster affinity mechanism
to create parallel threads either on the local cluster or on remote clusters, which
can be viewed as a potential extension to the pthread affinity in Linux/Unix. By
splitting the loop iteration space, each cluster has its own thread creator that
distributes the tiles to the processors.

for (i = 0; i < N; i ++) {
 for (j = 0; j < M; j ++) {
 loop body ...
 }
}

for (ic = 0; ic < N; ic += cluster_x) {
 for (jc = 0; jc < M; jc += cluster_y) {
 for (iL2 = ic; iL2 < MIN(ic + cluster_x, N); iL2 += L2Tile_x) {
 for (jL2 = jc; jL2 < MIN(jc + cluster_y, M); jL2 += L2Tile_y) {
 for (iL1 = iL2; iL1 < MIN(iL2 + L2Tile_x, N); iL1 += L1Tile_x) {
 for (jL1 = jL2; jL1 < MIN(jL2 + L2Tile_y, M); jL1 += L1Tile_y) {
 for (i = iL1; i < MIN(iL1 + L1Tile_x, N); i ++) {
 for (j = jL1; j < MIN(jL1 + L1Tile_y, M); j ++) {
 loop body ...
 }
 }
 }
 }
 }
 }
 }
}

distributed on different processors in same cluster

distributed on different clusters

Fig. 3. Tiling transformation for runtime tuning

Each tile has a corresponding divisor pair. Given a divisor pair (Di, Dj), Di

is the divisor corresponding to the outer loop iterator and Dj corresponds to the
inner loop iterator. Adaptive tiling uses a simple hill-climbing algorithm that
starts from a divisor pair (Di0, Dj0). The initial divisor pair is calculated such
that Di0×Dj0 = Pn, where Pn is the total number of processors. This partition,
hereafter referred to as a näıve scheme, simply distributes the tiles evenly among
the processing cores. Algorithm 1, included as an appendix, further describes how
to calculate Di0 and Dj0.

224 J. Zhao et al.

The adaptive optimization component of the OTF, increases Di and Dj iter-
atively to determine whether smaller tile sizes provide smaller execution times.
When no performance improvement is observed, the OTF stops the search.
Any divisor pair (Di, Dj) calculated during iteration is composed such that
Di × Dj = k × Pn where k is a positive integer value (k > 0) and Pn is the
total number of processors. Algorithm 2, also included as an appendix, presents
the search algorithm used to determine the divisor pairs. The search space is a
rectangular space which corresponds to the iteration space of a two-level nested
loop. Each searching step shrinks the area of the tile by half or changes the shape
of the tile.

For the specific multi-cluster CMP architecture considered, two tile sizes (for
the L1 and L2 cache) are considered. The adaptive search begins by finding
an optimal tile size for the L1 cache, which is a subset of the data within the
L2 cache. When an optimal L1 tile size is determined, the OTF searches for a
L2 cache tile size using the same searching algorithm but using different initial
divisor pairs. Algorithm 3 describes the combined searching mechanism to op-
timize loop division for a multi-cluster CMP architecture. Recall the example
loop shown in Figure 3, the search process for the L1 cache tile considers any
rectangle which is contained within a rectangle with sides clusterx and clustery.
The search space for the L2 cache tile is based on the L1 tile size. Given the
optimal divisor pair for L1 tile, (Dx, Dy), the search process for the L2 tile is any
rectangle with sides multiples of clusterx

Dx
and clustery

Dy
, respectively, and contained

within the rectangle with sides clusterx and clustery.

3.2 Runtime Profiling and Overhead

To evaluate the performance of the applied optimizations is predicated upon
access to runtime execution profile data. For adaptive tiling, this is achieved
by using a profiling thread dispatcher, shown in Figure 2 (b). Two additional
statements are inserted at the start and end of the parallelized loops. The first
statement extracts from the architecture the cycle count1 prior to the loops
execution and the second statement extracts the cycle count after the loop has
executed. The method aosProcess is responsible for reporting back to the AOS
the total cycle count and the number of loop iterations per thread. The OTF
is then able to calculate the execution time per iteration of each invocation of
the loop and can make decisions about the comparative performance with other
invocations of the same loop under different optimizations and configurations.

How representative are the measured execution times is a major factor for
the success of the runtime empirical search, and there are two issues that affect
it. The first one is that not all loops are of static length or duration. It is
possible that both the number of iterations and the loop contents will vary from
invocation to invocation. The second issue is that the execution timings are
affected by system noise; for example, cold caches and other unrelated thread
1 Although this mechanism is machine specific; instructions exist in the main archi-

tectures: RDTSC (x86), mftb (PPC), TICK register (SPARC).

Adaptive Loop Tiling for a Multi-cluster CMP 225

activity. To overcome these issues, the execution time for a given optimization on
a parallelized loop is calculated, as an arithmetic mean of the cycles per iteration
for three invocations of that loop. Loops that exhibit large profile deviations,
defined as having a coefficient of variation (CV) 2 greater than a configurable
threshold, for this work set at 0.1, are deemed unstable. When instability is
detected the profiling code is switched off and the current best optimization is
used.

For each run of the parallelized loop, the profiling mechanism records and
evaluates the timing data to progress or stop the search. The average overhead
for each searching step is less than 300 cycles, thus the profiling overhead is nearly
constant, although the accumulated overhead grows linearly with the number of
searching steps. As tile size tuning is based on runtime modification of a set of
parameters, there is no additional overhead for recompilation.

195

203
((8,8),(2,4))

((8,8),(4,2))

((16,8),(2,1))
((8,8),(2,1))

((8,4),(2,1))

((4,4),(2,1))

((4,2), (2,1))

e
xe

cu
ti

o
n

 c
yc

le
s

(m
ill

io
n

)

0 3 9 15 21 27 33 39 45
loop invocations

51 57

searching for L1Tile searching for L2Tile
executing with the
optimal tile sizes

199

207

((8,2), (2,1))

((4,8),(2,1)) ((16,4),(2,1)) ((8,16),(2,1))

6 12 18 24 30 36 42 48 54

((8,8),(2,2))

Fig. 4. Searching profile using DGEMM

Figure 4 shows the OTF searching for an optimal divisor during the execution of
the DGEMM benchmark. The problem iteration size is 256× 256, the hardware is
configured as a 2-cluster CMP architecture with each cluster containing 4 process-
ing cores, from now on we refer to such a configuration using the notation: 2c/4p.
The L1 cache size is 16KB, and 128KB for each L2 cache, again we will use the no-
tation: 16KB/128KB. The searching algorithm starts from a näıve tile divisor: for
the L1 tile (4, 2), and for the L2 tile (2, 1). By the 21st invocation of the parallelized
loop a local optimal L1 tile size has been found, and a local optimal L2 tile size is
found at the 18th invocation. Three invocations of the loop are used to assess tim-
ing stability. In this experiment the deviation did not exceed the threshold (0.1).
The optimal L1 and L2 tile sizes are applied at the 36th invocation finishing the
search phase. Note that by the very nature of the hill-climbing algorithms used,
the adaptive searching finishes after finding locally-optimal solutions.

Once optimal divisors are found for loop tiling, the AOS switches off the
runtime profiler and runs any subsequent executions of the loop using the best
optimization found. The thread dispatcher, is switched to a version that does
not contain the timing instrumentation, so that future execution of the code
runs without the cost of the profiling phase; see Figure 5. A runtime code patch
mechanism is employed to redirect the execution path to the normal thread
2 Coefficient of variation is the ratio of the standard deviation to the arithmetic mean.

226 J. Zhao et al.

JTOC

...

...

method_addr

...

LDL %x0, %x1, 0

Initialize Input Window

Registers

JSR %x0

LDA %x1, offset

LDA %x1, %g0, JTOC

...

code version 1

...code version 2

code version n

code version 2
is selected as
current version

Fig. 5. Code version switching

scheduler. A global data structure, JTOC [5], records references to both versions
of the code. Each time the compiled code calls a routine, it is required to first
load the method address from the JTOC (see the instructions LDA and LDL), and
then jump to the loaded method address (see the instruction JSR), making such
code switches possible.

4 Experimental Methodology

The experiments are performed on the multi-cluster CMP JAMAICA architec-
ture [18], using the OTF as part of the adaptive optimization system of the Jikes
RVM. The Jikes RVM has been ported to the JAMAICA architecture and runs
directly on top of the hardware. The JAMAICA architecture is implemented
within a highly configurable cycle-level processor and memory simulation plat-
form. The simulation platform allows the evaluation of the OTF on a wide range
of hardware configurations all using the same instruction set. The caches simu-
lated are 4-way set associative.

for (int i = 0; i < mLength; i ++) {
 for (int j = 0; j < nLength; j ++) {
 double temp = 0.0;
 for (int k = 0; k < nLength; k ++) {
 temp += alpha * matrixA[i][k] * matrixB[k][j] + beta * matrixC[i][j];
 }
 matrixC[i][j] = temp;
 }
}

for (int i = 0; i < length; i ++) {
 for (int j = 0; j < length; j ++) {
 double temp = 0.0;
 for (int k = i; k < length; k ++) {
 temp += matrixA[i][k] * matrixB[k][j];
 }
 matrixC[i][j] = temp;
 }
 }

(a) DGEMM (b) DTRMM

Fig. 6. Level 3 BLAS kernels

Two well known level 3 BLAS [3] kernels (DGEMM and DTRMM) and a
2D Java Lattice-Boltzamann (JLB) simulation (9 variables for each element) [1]
are used in the performance evaluation. The kernels for DGEMM and DTRMM
appear in Figure 6. Each kernel is executed to completion and validation on each
simulated architectural configuration. The configurations assess the performance
of the same optimizations in the presence of varying cache sizes, number of
clusters and number of processors per cluster.

Adaptive Loop Tiling for a Multi-cluster CMP 227

5 Results and Discussion

Different problem sizes (64×64, 128×128, 256×256 and 352×352 matrix) and dif-
ferent hardware configurations (clusters/processors: 2c/4p, 4c/2p and 4c/4p, and
L1/L2 cache sizes: 8KB/128KB, 8KB/256KB, 16KB/128KB and 16KB/256KB)
are used in the each experiment. For example, 4c/2p with 16KB/128KB refers
to a multi-cluster CMP configured with 4 clusters each with 2 processors (total
number of processors 8), and cache of sizes 16KB and 128KB for L1 and L2
cache, respectively.

The graph in Figure 7 presents the speedup attained using the optimal tile
sizes compared with that attained using näıve tile sizes. The näıve tile size is de-
fined as the square root of the number of processors. For example, a system with
16 processors has näıve L1 cache tile divisors (4, 4). The divisors are restricted
to integer values, thus in a system with 8 processors, the L1 cache tile could
either be (4, 2) or (2, 4) (see Algorithm 2). The näıve scheme is in used by static
optimizers as it achieves reasonable load balance and data locality. The results
of this paper show that the performance can be further improved by performing
a runtime empirical search.

DTRMM (128*128) DTRMM (352*352)DTRMM (256*256)
0

12

9

6

3A
d

d
iti

o
n

al
 S

p
ee

d
u

p
 (%

) o
ve

r n
ai

ve
 ti

lin
g 15

DTRMM (64*64)

LB (128*128) LB (352*352)LB (256*256)
0

4

3

2

1A
d

d
iti

o
n

al
 S

p
ee

d
u

p
 (%

) o
ve

r n
ai

ve
 ti

lin
g 5

LB (64*64)

(a) DGEMM

(b) DTRMM

(c) Lattice-Boltzmann (LB)

DGEMM (128*128) DGEMM (352*352)DGEMM (256*256)

0

10

8

4

2A
d

d
iti

o
n

al
 S

p
ee

d
u

p
 (%

) o
ve

r n
ai

ve
 ti

lin
g 12

DGEMM (64*64)

2c/4p 4c/2p

8KB/128KB 16KB/128KB

L1/L2 Cache Size

8KB /256KB 16KB/256KB

4c/4p

2c/4p 4c/2p

8KB/128KB 16KB/128KB

L1/L2 Cache Size

8KB /256KB 16KB/256KB

4c/4p

2c/4p 4c/2p

8KB/128KB 16KB/128KB

L1/L2 Cache Size

8KB /256KB 16KB/256KB

4c/4p

Fig. 7. The speedup compared with a näıve tiling scheme

228 J. Zhao et al.

(c) Lattice-Boltzmann (LB)

(b) DTRMM

(a) DGEMM

2c/4p 4c/2p

64*64
128*128
256*256
352*352

8KB, 128KB 16KB, 128KB 8KB, 256KB 16KB, 256KB 8KB, 128KB 16KB, 128KB 8KB, 256KB 16KB, 256KB 8KB, 128KB 16KB, 128KB 8KB, 256KB 16KB, 256KB
(4,2) (2,1) (4,2) (2,1) (4,2) (2,1) (4,2) (2,1) (4,2) (2,2) (4,2) (2,2) (4,2) (2,2) (4,2) (2,2) (4,4) (2,2) (4,4) (2,2) (4,4) (2,2) (4,4) (2,2)

(4,4) (2,1) (4,2) (2,1) (4,4) (2,1) (4,2) (2,1) (4,4) (2,2) (4,2) (2,2) (4,4) (2,2) (4,2) (2,2) (4,4) (2,2) (4,2) (2,2) (4,4) (2,2) (4,2) (2,2)

(8,8) (2,2) (4,4) (2,2) (8,4) (2,2) (4,4) (2,2) (8,4) (2,2) (4,4) (2,2) (8,4) (2,2) (4,2) (2,2) (8,4) (2,2) (4,4) (2,2) (8,4) (2,2) (4,2) (2,2)

(8,16) (4,4) (8,16) (4,4) (8,16) (4,2) (4,4) (4,2) (8,16) (4,4) (8,8) (4,2) (8,16) (4,2) (8,4) (4,2) (8,16) (4,2) (8,4) (4,2) (8,16) (4,2) (4,4) (4,2)

4c/4p

L1/L2 Cache Size
Naïve Divisor (4,2) (2,1) (4,2) (2,2) (4,4) (2,2)

8KB, 128KB 16KB, 128KB 8KB, 256KB 16KB, 256KB 8KB, 128KB 16KB, 128KB 8KB, 256KB 16KB, 256KB 8KB, 128KB 16KB, 128KB 8KB, 256KB 16KB, 256KB
(1,8) (1,2) (1,8) (1,2) (1,8) (1,2) (1,8) (1,2) (1,8) (1,4) (1,8) (1,4) (1,8) (1,4) (1,8) (1,4)

(4,8) (1,2) (2,8) (1,2) (2,8) (1,2) (2,8) (1,2) (2,8) (1,4) (2,8) (1,4) (2,8) (1,4) (2,8) (1,4)

(4,8) (2,2) (4,8) (2,2) (4,8) (1,2) (4,8) (1,2) (4,8) (1,4) (4,8) (1,4) (4,8) (1,4) (4,8) (1,4)

(8,8) (4,2) (4,8) (4,2) (8,8) (2,2) (4,8) (2,2) (8,8) (2,4) (4,8) (2,4) (8,8) (1,4) (4,8) (1,4)

(1,16) (1,4) (1,16) (1,4) (1,16) (1,4) (1,16) (1,4)

(1,16) (1,4) (1,16) (1,4) (1,16) (1,4) (1,16) (1,4)

(2,16) (1,4) (2,16) (1,4) (2,16) (1,4) (1,16) (1,4)

(2,16) (2,4) (2,16) (2,4) (2,16) (1,4) (2,16) (1,4)

2c/4p 4c/2p

64*64
128*128
256*256
352*352

4c/4p

L1/L2 Cache Size
Naïve Divisor (4,2) (2,1) (4,2) (2,2) (4,4) (2,2)

8KB, 128KB 16KB, 128KB 8KB, 256KB 16KB, 256KB 8KB, 128KB 16KB, 128KB 8KB, 256KB 16KB, 256KB 8KB, 128KB 16KB, 128KB 8KB, 256KB 16KB, 256KB
(4,4) (2,1) (4,2) (2,1) (4,2) (2,1) (4,2) (2,1) (4,2) (2,2) (4,2) (2,2) (4,2) (2,2) (4,2) (2,2)

(4,8) (2,2) (4,8) (2,2) (4,8) (2,1) (4,8) (2,1) (4,8) (2,2) (2,4) (2,2) (4,8) (2,2) (2,4) (2,2)

(4,8) (2,2) (8,16) (4,2) (8,8) (4,2) (8,16) (4,2) (8,16) (4,2) (4,8) (4,2) (8,8) (2,2) (4,8) (2,2)

(8,8) (4,2) (8,16) (4,4) (8,8) (4,4) (8,16) (4,2) (8,16) (4,2) (4,8) (4,2) (8,16) (2,2) (4,8) (2,2)

(4,4) (2,2) (4,4) (2,2) (4,4) (2,2) (4,4) (2,2)

(4,8) (2,2) (2,4) (2,2) (4,8) (2,2) (2,4) (2,2)

(8,8) (2,2) (4,8) (2,2) (8,8) (2,2) (4,8) (2,2)

(8,8) (2,2) (4,8) (2,2) (8,8) (2,2) (4,8) (2,2)

2c/4p 4c/2p

64*64
128*128
256*256
352*352

4c/4p

L1/L2 Cache Size

Naïve Divisor (4,2) (2,1) (4,2) (2,2) (4,4) (2,2)

Fig. 8. Optimal divisor pairs for different problem sizes and hardware configurations

Figure 8 shows the resulting optimal divisors for all of the evaluated bench-
marks. The näıve divisors for DGEMM are: 2c/4p and 4c/2p with L1 tile divisor
(4, 2) and L2 tile divisor (2, 1), 4c/4p with L1 tile divisor (4, 4) and L2 divisor
(2, 2). The speedup for DGEMM is shown in Figure 7(a). For small problem
sizes (e.g. 64 × 64 matrix), there is no obvious benefit for those configurations
with larger L1 cache sizes when compared to the näıve scheme. For larger prob-
lem sizes, however, larger divisors produce performance increases. The optimal
L2 tile sizes are related to the number of clusters. For example, the best L2 tile
divisors for 64×64 matrix are (2, 1) for the 2c/4p configuration and (2, 2) for the
4c/2p and 4c/4p configurations. By increasing the L2 cache size, the L2 cache
tile has less effect and its value is near the näıve configuration. This is why the
256KB L2 cache configurations used have lower speedup than the 128KB L2
cache configurations for the same problem size and L1 cache size.

The DTRMM nested loop is intrinsically load imbalanced, because the number
of iterations in the inner most loop (k-loop) depends on the iteration of the i-
loop, refer to Figure 6 (b). The optimal divisors are shown in Figure 8(b). For
configurations 2c/4p and 4c/2p, most of the best divisors for the j-loop L1 tile
sizes are 8, which is an even distribution of 8 parallel tasks to the 8 processing
cores. Similarly, most of the best divisors for the j-loop L1 tile sizes are 16 for
4c/4p. By increasing the problem size, both the L1 and L2 divisors are increased
to gain additional benefits from data locality. The speedups, shown in Figure
7(b), are more pronounced than for DGEMM, however, most of the benefit is
attained through better load balancing.

Finally the optimal divisors for JLB, which uses a stencil computation model,
are compared to the näıve tile sizes, which are the same as for DGEMM. The
speedups are shown in Figure 7(c). Compared with DGEMM, JLB has less

Adaptive Loop Tiling for a Multi-cluster CMP 229

cache cross-interference and as a consequence the optimization produces smaller
speedups.

6 Related Work

Kisuki, O’Boyle and Knijnebury [11] investigated iterative compilation for loop
tiling and loop unrolling. Their proposed compilation system achieved high
speedups, outperforming static techniques. The system shows that high levels
of optimization can be achieved in a limited number of iterations by applying a
hill-climbing like searching algorithm.

The ATLAS project [16,15] applies an automatic tuning mechanism to the
BLAS (basic linear algebra software library). Given a BLAS operation, AT-
LAS uses empirical off-line searches relying on actual execution times to choose
the best implementation on a specific architecture. ATLAS typically uses code
generators which generate multiple code versions, and has sophisticated search
scripts to find the best choice. Despite being an off-line system, ATLAS guides
the search using runtime profiling information.

Voss and Eigenmann [14] established an adaptive optimization framework
named ADAPT which performs dynamic optimization on hot spots through
empirical search. ADAPT uses dynamic recompilation to evaluate different opti-
mizations and a domain-specific language to drive a search on the optimization
space for a specific optimization. For example in loop unrolling, each level of un-
rolling is compiled, executed and timed, and the fastest version is kept and used
for subsequent executions of the hot spot. The compiler used for recompilation
is run on a separate parallel processor which reduces the recompilation overhead
at runtime.

Fursin et al. [8] explored online empirical searches for scientific benchmarks.
To reduce runtime code generation overheads, a set of optimized versions of
code are created prior to the execution of a program. These versions are then
evaluated at runtime with the best performing version chosen for subsequent
execution. They employ predictive phase detection to identify the periods of
stable repetitive behavior of a program and use these phases to improve the
evaluation of alternative optimized versions.

In contrast with the above work, this paper combines a loop-level parallelizing
compiler and an adaptive optimization framework, within a virtual machine, that
targets a chip multi-cluster CMP architecture which has a multiple level cache
hierarchy. The runtime optimization can leverage some strengths of iterative
optimization to make JIT more suitable for CMP architectures.

7 Conclusion

Loop tiling is a fundamental optimization for improving data locality. As the use
of CMPs increases, selecting the right tile size combined with the parallelization
of loops within a virtual machine may be one way of increasing performance.
This paper presents a runtime optimization mechanism which automatically

230 J. Zhao et al.

parallelizes loops and tunes them for the best tile sizes on a scalable multi-
cluster CMP, a feasible next generation multi/many core architecture.

By optimizing the tile sizes for both L1 and L2 caches, a memory intensive
application can increase performance. The system is built on top of a virtual ma-
chine and targets the runtime parallelization and optimization of Java programs.
Experimental results show performance speedups, up to 14.1% for two level 3
BLAS kernels (rectangular and triangular iteration spaces) and a 2D Lattice-
Boltzmann simulation (stencil computation with 9 variables per grid point). The
speedup is over a traditional parallelization and tiling scheme and also includes
the initial overheads involved with profiling.

References

1. Lattice boltzmann method, http://www.latticeboltzmann.com/

2. The Jamaica Project (May 2005),
http://www.cs.manchester.ac.uk/apt/projects/jamaica

3. Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J., Dongarra, J.J., Du
Croz, J., Hammarling, S., Greenbaum, A., McKenney, A., Sorensen, D.: LAPACK
Users’ guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadel-
phia (1999)

4. Arnold, M., Fink, S.J., Grove, D., Hind, M., Sweeney, P.F.: Adaptive optimization
in the Jalapeño JVM. In: ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pp. 47–65 (2000)

5. Burke, M., Choi, J., Fink, S., Grove, D., Hind, M., Sarkar, V., Serrano, M., Sreed-
har, V., Srinivasan, H., Whaley, J.: The Jalapeño dynamic optimizing compiler
for Java. In: Proceedings ACM 1999 Java Grande Conference, San Francisco, CA,
United States, June 1999, pp. 129–141. ACM (1999)

6. Carr, S., Kennedy, K.: Compiler blockability of numerical algorithms. Supercom-
puting, 114–124 (1992)

7. Coleman, S., McKinley, K.S.: Tile size selection using cache organization and data
layout. In: SIGPLAN Conference on Programming Language Design and Imple-
mentation, pp. 279–290. ACM Press, New York (1995)

8. Fursin, G., Cohen, A., O’Boyle, M., Temam, O.: Quick and practical run-time
evaluation of multiple program optimizations. Transactions on High-Performance
Embedded Architectures and Compilers 1(1), 13–31 (2006)

9. Hammond, L., Hubbard, B.A., Siu, M., Prabhu, M.K., Chen, M., Olukotun, K.:
The Stanford Hydra CMP. IEEE Micro, 71–84 (March–April 2000)

10. Horsnell, M.J.: A chip multi-cluster architecture with locality aware task distribu-
tion. PhD thesis, The University of Manchester (2007)

11. Kisuki, T., Knijnenburg, P.M.W., O’Boyle, M.F.P.: Combined selection of tile sizes
and unroll factors using iterative compilation. In: International Conference on Par-
allel Architectures and Compilation Techniques, pp. 237–246 (2000)

12. Kongetira, P., Aingaran, K., Olukotun, K.: Niagara: A 32-way multithreaded sparc
processor. IEEE Micro 25(2), 21–29 (2005)

13. Lam, M.S., Rothberg, E.E., Wolf, M.E.: The cache performance and optimizations
of blocked algorithms. In: International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 63–74 (1991)

http://www.latticeboltzmann.com/
http://www.cs.manchester.ac.uk/apt/projects/jamaica

Adaptive Loop Tiling for a Multi-cluster CMP 231

14. Voss, M., Eigenmann, R.: High-level adaptive program optimization with ADAPT.
In: ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, pp. 93–102 (2001)

15. Whaley, R.C., Petitet, A.: Minimizing development and maintenance costs in sup-
porting persistently optimized BLAS. Software: Practice and Experience 35(2),
101–121 (2005)

16. Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated empirical optimizations of
software and the ATLAS project. Parallel Computing 27(1–2), 3–35 (2001)

17. Wolfe, M.J.: High performance compilers for parallel computing. Addison-Wesley,
Redwood City (1996)

18. Wright, G.: A single-chip multiprocessor architecture with hardware thread sup-
port. PhD thesis, The University of Manchester (2001)

19. Zhao, J., Horsnell, M., Rogers, I., Dinn, A., Kirkham, C.C., Watson, I.: Optimizing
chip multiprocessor work distribution using dynamic compilation. In: Kermarrec,
A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 258–267.
Springer, Heidelberg (2007)

232 J. Zhao et al.

Appendix - Adaptive Tiling Algorithms

Algorithm 1. init tile rect (initialize tile size for rectangle iteration space).

Input: Num, number of processors (or clusters).
Output: a initial divisor pair
Implementation:
step 1: t ⇐ �sqrt(t)�;
step 2:
while (Num%t)! = 0 do

t ⇐ t − 1
end while
step 3: return (Num

t , t)

Algorithm 2. tile search rect (search tile size for rectangle iteration space).

Input: Num, number of processors or clusters
Output: optimal divisor pair
Implementation:
step 1: (Di0, Dj0) ⇐ init tile rect(Pn);
Evaluate the runtime performance by initial tile size (Di0, Dj0), get execution cycles E0
step 2: (Di, Dj) ⇐ (Di0, Dj0)
step 3: (Dil, Djl) ⇐ (Di × 2, Dj); (Dir , Djr) ⇐ (Di, Dj × 2);
Evaluate the runtime performance by two tile sizes: (Dil, Djl) and (Dir , Djr), get execution cycles
El and Er

if E0 ≤ El and E0 ≤ Er then
goto step 4

end if
if Er ≤ El then

(Di, Dj) ⇐ (Dir , Djr)
else

(Di, Dj) ⇐ (Dil, Djl)
end if
goto step 3
step 4:
if (Di, Dj) = (Di0, Dj0) then

goto step 5
else

return (Di, Dj)
end if
step 5: (Di, Dj) ⇐ (Di0, Dj0); i ⇐ 2

step 6: (Dil, Djl) ⇐ (�Di
i �, Dj × i); (Dir , Djr) ⇐ (Di × i, �Dj

i �);
Evaluate the runtime performance by two tile sizes: (Dil, Djl) and (Dir , Djr), get execution cycles
El and Er

if E0 ≤ El and E0 ≤ Er then
return (Di, Dj)

end if
if Er ≤ El then

(Di, Dj) ⇐ (Dir , Djr); E0 ⇐ Er;
else

(Di, Dj) ⇐ (Dil, Djl); E0 ⇐ El;
end if
i ⇐ i + 1
goto step 6

Algorithm 3. Multiple levels search.
Input: Pn, number of processors; Cn number of clusters.
Output: optimal divisor pairs for L1 and L2 tile
Implementation:
step1: Search for L1 cache tile size
L1Tile ⇐ tile search rect(Pn), L1Tile is the optimal divisor pair for L1 tile
step2: Search for L2 cache tile size
L2Tile ⇐ tile search rect(Cn), L2Tile is the optimal divisor pair for L2 tile

Quasi-opportunistic Supercomputing in Grid

Environments

Valentin Kravtsov1, David Carmeli1, Werner Dubitzky2, Ariel Orda1,
Assaf Schuster1, Mark Silberstein1, and Benny Yoshpa1

1 Technion - Israel Institute of Technology, Haifa, Israel
svali ds@cs.technion.ac.il

2 University of Ulster, Coleraine, Northern Ireland

Abstract. The ultimate vision of grid computing are virtual supercom-
puters of unprecedented power, through utilization of geographically dis-
persed distributively owned resources. Despite the overwhelming success
of grids there still exist many demanding applications considered the ex-
clusive prerogative of real supercomputers (i.e. tightly coupled parallel
applications like complex systems simulations). These rely on a static
execution environment with predictable performance, provided through
efficient co-allocation of a large number of reliable interconnected re-
sources. In this paper, we describe a novel quasi-opportunistic supercom-
puter system that enables execution of demanding parallel
applications in grids through identification and implementation of the
set of key technologies required to realize the vision of grids as (virtual)
supercomputers. These technologies include an incentive-based frame-
work basic on ideas from economics; a co-allocation subsystem that is
enhanced by communication topology-aware allocation mechanisms; a
fault tolerant message passing library that hides the failures of the un-
derlying resources; and data pre-staging orchestration.

1 Introduction

The total capacity (processing elements, primary and secondary memory) of
modern grids (e.g. EGEE [2] and SETI@HOME [1]) often exceed that of an ad-
vanced supercomputer like IBM’s BlueGene. This suggests that such grid com-
puting environments could one day complement the expensive supercomputers.
To eat into the predominance of supercomputers, grids will need to improve in
their ability to execute tightly coupled parallel applications. Several characteris-
tics of such applications – in addition to their massive computational demands
– make their execution on grids particularly challenging.

The co-allocation of a large number of participating CPUs – required prior
to computation – is followed by the synchronous invocation of subcomputa-
tions. In supercomputers, where all CPUs are exclusively controlled by a cen-
tralized resource management system, such co-allocation and co-invocation have
always been available. In grid systems, however, inherently distributed manage-
ment coupled with the non-dedicated nature of the computational resources make

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 233–244, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

234 V. Kravtsov et al.

such co-allocation very hard to accomplish in practice. Previous research has fo-
cused on co-allocation in grids of supercomputers and dedicated clusters [3], but
we are not aware of any co-allocation system for non-dedicated environments.

Synchronous communications typically form a specific communication
topology pattern (e.g. stencil exchange and local structures in complex sys-
tems). This is satisfied by supercomputers via a special-purpose, low-latency,
high-throughput interconnects as well as optimized allocation by the resource
management system to ensure that the underlying networking topology matches
the application’s communication pattern [4]. In grids, however, synchronous com-
munications over a WAN are prohibitively slow, and topology-aware allocation
is typically not available despite the existing support of communication libraries.

Allocation of resources does not change during runtime. While always
true in supercomputers, this requirement is difficult to satisfy in grids, where
low reliability of resources and WANs, as well as uncoordinated management of
different parts of the grid contribute to extreme fluctuations in the number of
available resources.

In a massive synchronous computation, the high sensitivity of individual
processes to failures usually leads to termination of the whole parallel run.
Such failures, while rare in supercomputers because of their reliable hardware,
are very common in grid systems.

Co-allocation and fault tolerance are particularly challenging in grids. Clearly,
it is impossible to achieve these in a loosely coordinated environment where
erratic behavior of resources is allowed. Thus, a realistic but more restricted grid
model should be adopted. In this model a grid comprises a set of independently
managed clusters which are contributed by different collaborating organizations,
each of which is shared by the local organization’s users as well as external grid
users. In practice, however, even this restricted model would not facilitate co-
allocation and fault tolerance. This is because the resources are not dedicated
to the execution of grid parallel jobs and can be reallocated in favor of local
submissions at any time. Furthermore, local cluster administrators are likely to
increase the priorities of local users, possibly disabling remote jobs completely
and, thus, effectively ‘decomposing’ the grid back into individual clusters.

In this article we propose the novel concept of quasi-opportunistic grid en-
vironments. In such environments, agreements between economic entities (i.e.
administrative domains) are enforced through an economic framework that in-
struments the resource management system with incentives to contribute to the
global computational effort. That is why such environments cannot be consid-
ered truly opportunistic – hence the notion ‘quasi-opportunistic’. The economic
framework serves as a basis for the co-allocation subsystem to establish and
maintain grid-wide simultaneous allocations of multiple resources, taking into ac-
count the communication topology requirements of the applications and utilizing
the capabilities of the internal cluster interconnects. Finally, since hardware and
network failures in large scale environments are inevitable, a fault-tolerant mes-
sage passing library is being designed to provide distributed checkpoint restart

Quasi-opportunistic Supercomputing in Grid Environments 235

mechanisms. Integration of all these components is expected to make a quasi-
opportunistic grid an alternative to a real supercomputer. This alternative is
currently being pursued by the European Commission funded project QosCos-
Grid (www.QosCosGrid.com).

2 The Challenges of Supercomputing over a Grid

Non-dedicated resources. Real-world grids comprise many distributively
owned clusters of resources, each serving a community of local users while exe-
cuting externally requested grid jobs. In such a setup, local users are typically
prioritized. This policy results in unpredictable performance degradation of the
jobs originating from the grid. The fluctuations in resource availability could
be prevented by mechanisms that negotiate and enforce suitable global resource
sharing policies (e.g. advance reservation) and provide adequate incentives for
the resource providers to maintain these policies. Note that such incentives, if
introduced, should be taken into account during scheduling [5].

Frequent failures. Even in the presence of dedicated resources, the inherently
distributed nature of grids implies unpredictable and frequent failures. While
easily handled with ‘embarrassingly parallel’ workloads, such failures are devas-
tating for complex parallel computations. Therefore, a grid infrastructure must
provide fault tolerance for all its sub-components during run-time [6].

Network heterogeneity. The network topology of a typical grid can be pre-
sented as a graph with multiple cliques (clusters), with high-capacity links within
cliques and low-capacity links among them. High performance cannot be attained
unless the grid middleware can expose this topology to the application and apply
topology-aware resource allocation algorithms that satisfy the topology require-
ments of a given application [7].

Data pre-staging orchestration. The system must ensure the availability of
input data at all remote resources prior to execution [8].

3 The Principles of Quasi-opportunistic Grids

3.1 Infrastructure

Supercomputing-like capabilities are realized through sharing of resources within
a collaborative grid. A collaborative grid consists of several organizations that
agree to share certain resources within a virtual organization (VO). Each mem-
ber of a VO must adhere to two principles. First, it must be in control of its
administrative domain (AD) in terms of resource allocation and sharing policies,
as well as their enforcement within this domain. Second, it must contribute some
of its resources to the pool of resources shared by the VO. In return it will be
granted access to a possibly very large resource pool. The VO members agree to
connect their resource pools to a trusted ‘grid-level’ middleware which in turn is
responsible for ensuring optimal resource utilization. This middleware serves as

236 V. Kravtsov et al.

a mediating agent between the clients requiring the resources and the resource
providers. Usually, organizations participate in a collaborative grid because the
resource requirements of their applications are too demanding to be satisfied by
the organization’s own resources. It is assumed that each VO participant (which
is simultaneously a resource provider and consumer) tries to maximize the ben-
efit from participating in the VO by prioritizing its own resource users. Since
such behavior may not be optimal from a global perspective, suitable economics-
based models attempt to balance coordinated resource sharing by enticing re-
source providers to share their resources in exchange for the long-term benefit
of having access to the large and powerful VO pool. The mediator controls and
maintains central VO-wide scheduling policies. It has a well-defined global util-
ity function, which the mediator tries to maximize in order to achieve a global
optimum that benefits all VO participants. Different utility functions result in
different resource scheduling and allocation plans. A scheduling policy could be
viewed as a pluggable component that defines a scheme for global ‘welfare’. Most
existing collaborative grid systems employ simple opportunistic approaches to
sharing and using resources, e.g. allocate resources when they become available
[9]. In our case, such an approach is impractical, as a huge number of tightly
coupled tasks need to be executed in parallel. Hence, a scheme ensuring certain
levels of quality of service must be introduced and enforced.

3.2 Quality of Service

In service-centric systems, quality of service (QoS) is defined as the ability of
a service to provide a guarantee of a certain quality of the service to the appli-
cation. Such a guarantee may relate to both quantitative and qualitative prop-
erties of a resource. Qualitative properties usually refer to service reliability
and user satisfaction, while quantitative characteristics include elements such
as networks, CPUs, and storage. Usually, applications specify two QoS require-
ments: the characteristics of the resource and the period for which the resource
is required. Reservation involves giving the application an assurance that the
resource allocation will succeed with the required level of QoS. The reservation
may be immediate or in advance, and the duration of the reservation may be
definite (for a defined period of time) or indefinite (for a specified start time and
unlimited duration). However, providing guarantees for resource availability in
large-scale grid systems is not a trivial task. The resources must be reserved and
co-allocated on many geographically distributed sites.

3.3 Co-allocation of Large Numbers of Resources

Quasi-opportunistic grid systems are envisaged to be used mainly by applications
composed of multiple agents. These agents are arranged in a dynamic topology
with different levels of communication. This scenario implies that if resource co-
allocation is to be efficient and effective, the co-allocation system must consider
the hierarchical structure of resource requests and offers. We represent this hi-
erarchy by graphs in which vertices represent computational elements and edges

Quasi-opportunistic Supercomputing in Grid Environments 237

represent communication links. Efficient matching between the resource requests
and resource offers could be viewed as a graph-matching problem. Once the tar-
geted resources are identified, they should be reserved and made available to
run the parallel tasks of the requesting application. We are implementing a co-
allocation mechanism that uses advance reservation of resources. This requires
that the co-allocation systems of local clusters support advance reservation fea-
tures. We believe that for large-scale, purely opportunistic grid environments
with no resource availability guarantees, it is virtually impossible to solve the
co-allocation problem. Such guarantees seem only realistic if resource providers
have an incentive to give them.

3.4 Economics-Based Resource Allocation

The complex, parallel grid applications require guaranteed allocation of re-
sources, such as computing elements, network bandwidth, memory, disk storage,
databases/datasets, and other specialized resources. One of the main obstacles in
providing such guarantees is to make different parts of the grid (AD owners) co-
operate so as to enhance the social ‘welfare’ of the entire system. We cannot rely
upon their altruism and need to deal with the problem of ‘free-riders’ (individ-
ual users who have no incentive for sharing their own resources). The free-riding
problem does not belong solely to grid systems. Thus, in successful peer-to-peer
systems, such as Kazaa or E-Mule, there is a mechanism that offers the user
incentives to share. In order to resolve the free-riding issue, we establish a link
between the past behavior of the AD and its future utilization of the system,
preferring ADs that have a better resource contribution record in the scheduling
process. We studied several incentive schemes. The tit-for-tat strategy is not
suitable for our system for two reasons: (a) it cannot handle heterogeneous re-
quests (a general problem with bartering), and (b) it cannot hold a global view of
the players’ behavior. For example, if A gave its resources to B and C (and has a
positive ‘balance’ with them) but not to D, why should D prefer A over someone
who did share its resources? The reputation system has the problem of linking
players’ reputation ratings with their tasks’ valuation. For instance, suppose that
A is above B in the reputation system, and B needs C’s resources desperately
while A can wait, who should get the resources? Finally, in the virtual pay-
ment method [11], the resource description includes pricing information in both
the job description and the resource offer. The scheduler considers this informa-
tion during the resource allocation process. In this manner, the past behavior of
a strategic player can be linked with its future utilization of the system. While
posing several implementation-related challenges (e.g. transaction management,
non-trivial accounting systems). This scheme does not suffer from the drawbacks
of the tit-for-tat and reputation strategies.

In our system we chose to follow the ideas of the virtual payments approach,
as it satisfies our requirements to reward well-behaved players. In grid terms, the
more resources are shared by the AD, and the more it complies with the signed
agreements, the more it will be able to utilize the system. We demonstrate that
the virtual payments approach indeed realizes these ideas in Section 5.

238 V. Kravtsov et al.

Based on the virtual payments technique, we have designed an economics-based
resource allocation system. One of its cornerstones is a round-based scheme. In
each round, an AD, which represents both users of this domain and resources that
belong to it, sends resource bids and offers. A resource bid, which represents a job
submission, consists of the resource description and the price a user is willing to
pay for the job’s execution. A resource offer represents the AD’s willingness to
share its resources along with a reserved price for each resource offered. In other
words, the domain is not ready to share this resource for less than the stated price.
Each AD of a VO starts with a predefined budget, divided among the users of the
domain. Each AD tries to maximize its budget in order that future requests for
resources can be fulfilled. In each round, the system calculates a feasible allocation
that maximizes the social welfare according to the bids and offers received from
the ADs. At the end of the round, payments are transferred to the related ADs
according to the allocation.

3.5 Fault Tolerance

Several techniques are being developed to provide fault tolerance to applica-
tions to be run on the quasi-opportunistic grid system. The most important are
a distributed checkpoints-and-restart protocol (C/R) and a fault-tolerant MPI
protocol [12]. The C/R protocol is intended to partially or completely stop appli-
cations if failures occur and migrate them according the scheduling policy. In our
system, reliable communication will be achieved by means of a new cross-domain
fault-tolerant MPI communication protocol. The majority of the current fault-
tolerant MPI implementations provide transparent fault tolerance mechanisms
for clusters. However, to provide a reliable connection within a grid computing
environment, a fault-tolerant and grid-middleware-aware communication library
based on the MPI2 specification will be evaluated for possible implementation.

4 Initial Design

Conceptually, the QosCosGrid system is composed of three main entities: the
end users, the administrative domains, and the grid level.

4.1 End User Level

Typical end users of quasi-opportunistic grid systems include physicists, biol-
ogists, social scientists and engineers, none of whom is generally very familiar
with the intricate technological details of grid technology. Such users are keen to
run their applications and are mainly concerned with whether there are enough
resources to run them. Whether the resources are sufficient to execute an appli-
cation depends on two factors: (1) on the number of suitable resources present in
the system, and (2) on whether the user’s AD is willing to pay for the required
resources. To enable application-oriented users to submit and monitor jobs, it
is mandatory that the system provide a sophisticated user interface which hides

Quasi-opportunistic Supercomputing in Grid Environments 239

the details of the grid level from the user. Such user interfaces should include a
resource planner as well as a budget planner. As each user belongs to one or more
ADs, the resource and budget planner needs to negotiate with the appropriate
AD level components and services.

4.2 Administrative Domain Level

The responsibility of the ADs is twofold. First, an AD needs to provide reliable
grid resources. Second, it needs to serve as a gateway for the end users who
belong to it. To support end users, an AD includes a job submission manager
component, which is responsible for interaction with the end user components.
ADs share the earned virtual money among their users according to a predefined
policy, with the ability to prioritize applications and users that are considered
important. ADs are the only system entities that can receive or spend its vir-
tual money. To manage its economic subsystem efficiently, an AD must include
a component which defines and enforces the economic policies inside the AD.
Such policies may vary from one AD to another. An additional component on
the AD level, the resource manager component, is responsible for ensuring the
efficient utilization of the AD’s computing, storage and network resources. The
resource manager is in charge of advance reservation of resources, resource topol-
ogy analysis, and publishing. Whenever a job is assigned to be executed on the
resources of an AD, the job is handled by the execution manager component.
The responsibilities of the execution manager are to allocate resources for job
execution, to orchestrate the stage-in and stage-out of data, and to initiate the
actual execution of jobs. The execution manager is also responsible for perform-
ing corrective actions in case of system failures. It is alerted to such failures by
the monitoring subsystem, which constantly polls the quantitative properties of
the computational, network, and storage elements in the system and propagates
the information to the subscribed services in the AD or grid levels. One of the
services requiring such information is the topology-building service, located in
the AD level. The topology-building service is responsible for transforming the
raw quantitative resource properties into the resource topology graph. Resource
topology graphs are used to describe the resource structure in many parts of
the system, e.g. resource offers, resource requests, service-level agreements, and
more.

4.3 Grid Level

The grid level represents a commonly trusted entity responsible for maximizing
the global ‘social welfare’ within a VO. All services at the grid level are con-
sidered logical singletons. Clearly, the implementation of such a service could be
distributed to achieve high availability. The grid level does not provide or request
any resources and thus is not considered an active economic entity; that is, it
cannot spend or earn virtual money. However, the grid level serves as a ‘virtual
bank’, which keeps track of the accounts of ADs within a VO and is responsi-
ble for all the payment transfers in the system. The grid level also includes a

240 V. Kravtsov et al.

global information system, which provides information regarding the available
resources, future reservations, and all the agreements signed among the partici-
pants. One of the most important and sophisticated services located at the grid
level of the system is the meta-scheduler service. This service acts as a mediator
between the resource providers and consumers, and it performs scheduling and
co-allocation of resource requests (grid jobs). Using a configurable utility func-
tion or objective function, the meta-scheduler attempts to maximize the ‘global
welfare’ of the system participants by means of advanced scheduling and allo-
cation algorithms. Such an objective function might be defined, for example, to
optimize resource utilization, resource providers’ revenue, and so on. Resource
consumers whose jobs are allocated for execution on one or more ADs other
than their own are required to sign an agreement with all ADs in which the
terms of resource provision are defined. All signed agreements are stored at the
grid level by means of an agreement service. Fulfillment of the agreements is
monitored by the monitoring service, which is also located at the grid level. The
monitoring service facilitates real-time monitoring and implementation of signed
agreements; it also initiates corrective procedures when failures occur. The mon-
itoring services also initiates money transfers between resource providers and
consumers when agreements are fulfilled or breached.

4.4 Resource Description Model

When dealing with highly complex parallel applications, a correct and efficient
description of the resource offers and resource requests is essential. In the grid
community, the most widely accepted and used resource description model is the
GLUE schema [13]. It is used to describe the properties of grid resources, such
as computational clusters or storage nodes, and includes a very basic descrip-
tion of network interconnections. Although the GLUE schema can describe most
of the simple resource infrastructures, it is inadequate for the efficient descrip-
tion of resource topologies which is required for complex parallel applications.
Such applications cannot be executed efficiently in a grid environment if all-to-
all communication is needed. Efficient execution of the tightly coupled parallel
applications relies heavily on precise definitions of execution node topology and
interconnection bounds. Such a topology is usually recursive and hierarchical, in
contrast to the GLUE schema, which describes the grid as a ‘cluster of clusters’.
There exists a hierarchical model which contains quantitative properties of both
computational and network nodes [14]. Highly sophisticated topology structures
can be comprehensively described with this model. We find it to be very flexible
and efficient, and thus have chosen to adopt it for the description of resource
offers and requests in the QosCosGrid project.

4.5 Life Cycle

To illustrate the functionality of the QosCosGrid system, we describe and analyze
the complete life cycle of a job defined by a user. Before a job can be processed

Quasi-opportunistic Supercomputing in Grid Environments 241

by the QosCosGrid system, it must be defined by a user with appropriate au-
thorization and authentication credentials. The job description includes all the
standard job properties such as executable, data inputs and outputs, operating
system, memory and CPU constraints, valid parameters for each task, and so on.
In the job description phase, the user employs the job planner to specify his or
her preferences regarding the number of execution nodes, the desired intercon-
nectivity level between bundles of nodes, the required storage space, and so on.
All these properties are described in terms of parameters and their minimum,
maximum, and default (preference) values. Given this information and the rates
or costs of the available resources, the budget planner determines if the funds are
sufficient to process the job in the system. After the job is successfully described
and planned, its description is transferred from the user level to the user’s AD for
further processing. The meta-scheduler negotiates with other ADs regarding the
necessary resources and the execution start time. If the negotiation is successful,
agreements are signed between the user’s AD, which is willing to pay for user’s
job, and all the other ADs, which are ready to share their resources in return for
the agreed price. Before the scheduled execution, the job description and all the
required executables, libraries and data input files are staged to the execution
machines. Upon arrival of the agreed execution time, the execution is started
on all sites and is monitored by the monitoring service until the execution is
terminated (successfully or with an exception) or a breach of the agreement is
detected. If the execution completes successfully, the job execution results are
staged out to the predefined storage location.

5 Preliminary Results

All the components of the presented quasi-opportunistic computing system are
being actively developed. While the system is still immature and is incapable
of performing real computations, we here demonstrate the performance of the
economic-based allocation subsystem, as it is clearly a dominant factor in the
feasibility of the quasi-opportunistic computing concept as a whole.

We have developed a simulation environment to test our economic model. This
environment allows us to describe the model, which includes many ADs trying
to submit jobs to the system, the description of those jobs, and the submission
processes themselves. Resource allocation by the centralized entity is also sim-
ulated, and the service-level agreements are created according to a predefined
social welfare function.

We define a system’s utilization index as the percentage of submitted resource
requests in which the user actually received the requested resources in the next
allocation round. Sharing frequency is defined as the probability that the AD will
share its resources in each allocation round. Our experiments were carried out
on a fixed number of ADs (n=10), each of which starts with the same number
of resources and the same amount of money.

Our results indicate that there is always a strong correlation between the rev-
enues that the AD receives and its utilization index. Thus, each AD is motivated

242 V. Kravtsov et al.

to increase its revenues. In addition, we have found that ADs that share their re-
sources more frequently and generously accumulate higher revenues in the long-
run. However, an AD that has many frequent users tends to have a lower utilization
index. This result conforms to our intuition, since ADs with a constant number of
credits to share among a large number of users tend to have fewer credits per user.
These results confirm the validity of our system: sharing resources is a preferable
strategy for each AD. Therefore, we can expect that the rational behavior of each
AD will conform to the system architects’ intentions.

Testing the influence of stated reserved prices on the expected long-term rev-
enues, we discovered that any given domain could maximize its revenues by
finding its optimal reserved price subject to reserved prices stated by all other
domains throughout the system’s history. We also developed an approximate
algorithm for the calculation of an optimal reserved price.

Another important insight we gained suggests that the initial budget distri-
bution has no effect in the long-run. Although an AD’s initial credit affects the
allocation in the first few rounds, its future utilization of the system depends
only on its own behavior. This is based on the assumption that all the players
have valuable resources, i.e. there are domains willing to pay for resources of
any of the ADs within the grid. This assumption is legitimate in the context of
quasi-opportunistic grids

6 Related Work

The majority of state-of-the-art production and academic grid systems do not
address the complete bundle of features discussed in this paper. EGEE [2] has
developed a complete grid system that facilitates the execution of scientific ap-
plications requiring large computational and data-intensive capabilities within a
production-level grid environment. EGEE spans more than 150 sites with more
than 30 000 available CPUs. The current version of EGEE’s grid middleware,
gLite, does not currently support advance reservation. Due to the support of
various low-level cluster management systems such as Condor, LSF, PBS, gLite
does not support checkpoint and restart protocols, and cannot guarantee the
desired level of QoS for very long executions.

HPC4U (www.hpc4u.org) is arguably closest to the objectives of QosCosGrid.
Its objective is to expand the potential of the grid approach to complex problem
solving. This would be done through the development of software components for
dependable and reliable grid environments, combined with service level agree-
ments and commodity-based clusters providing quality of service. The QosCos-
Grid project differs from HPC4U mainly in its ‘grid orientation’. QosCosGrid
assumes multi-domain, parallel executions (in contrast to within-cluster parallel
execution) and applies different MPI and checkpoint/restart protocols that are
grid-oriented and highly scalable.

TeraGrid (www.teragrid.org) is a US national project offering extremely high
computational and data capacities. Its objectives are different to those of the
QosCosGrid project, as the TeraGrid already offers considerable supercomputing

Quasi-opportunistic Supercomputing in Grid Environments 243

abilities. Hence, since each site contains reliable and robust nodes, the need to
provide QoS through software is eliminated. TeraGrid does not seem to support
advance reservation and automated job co-allocation.

7 Summary and Conclusions

Computer-based simulations of complex natural phenomena and man-made arti-
facts are increasingly employed in a wide variety of sectors. Typically, such sim-
ulations require computing environments which meet very high specifications
in terms of processing units, primary and secondary storage, communication,
and reliability. Supercomputers are the de facto technology for delivering the
required specifications. Acquiring, operating and maintaining supercomputers
carry considerable costs which many organizations cannot afford. The work-
ing assumption of the QosCosGrid project is that a grid could be enhanced by
suitable middleware to provide features and performance characteristics that re-
semble those of a supercomputer. We refer to such a grid as quasi-opportunistic
supercomputer. We have argued that in order to realize a quasi-opportunistic
supercomputer in a collaborative grid, we must implement a resource alloca-
tion mechanism that goes beyond the opportunistic approaches of current grid
systems. In particular, the co-allocation of a large number of resources requires
advance reservation features and non-trivial QoS guarantees. Moreover, to es-
tablish a successful collaborative grid, ADs and users need incentives so that
their resource provision and consumption behavior will yield long-term mutual
benefit. We investigated some economics-based concepts for resource allocation
which could foster ‘global welfare’ and address issues such as ‘free riding’. We
showed that service-level agreement concepts are likely to play an important
role in the enforcement of an economics-based scheduling and allocation system.
The volatile nature of grid resources necessitates sophisticated fault-tolerance
features in the QosCosGrid system. Developments are underway for a fault-
tolerant and grid-middleware-aware communication library based on the MPI2.
The initial design of the QosCosGrid revolves around three main elements:
end users, ADs, and the grid level. Critical to application-oriented end users
are user interfaces that hide intricate grid details from the end user. To real-
ize some of the requisite features of the QosCosGrid system, we identified the
basic system components and their required roles at the AD level. These in-
clude a job submission, resource, and execution manager. Ultimately, the grid
level is responsible for ensuring the satisfaction of all participants (ADs, end
users) of the VO. In particular, the grid level is designed to provide a meta-
scheduler service which acts as a mediator between the resource providers and
resource consumers and performs scheduling and co-allocation of resource re-
quests (grid jobs). The grid level also serves as a ‘virtual bank’ which han-
dles the exchange of the money used to implement the economics model of
the system. A grid-level monitoring service oversees the fulfillment of signed
agreements.

244 V. Kravtsov et al.

Acknowledgments

This work is supported by the European Commission FP6 grant QosCosGrid,
contract no.: 033883.

References

1. University of California: SETI@Home. The Search for Extra-Terrestrial Inteligence
(SETI) (2007), http://setiathome.ssl.berkeley.edu

2. Gagliardiand, F., Jones, B., Grey, F., Bgin, M.-E., Heikkurinen, M.: Building an
infrastructure for scientific grid computing: Status and goals of the EGEE project.
Philosophical Transactions A of the Royal Society: Mathematical, Physical and
Engineering Sciences 363(833), 1729–1742 (2005)

3. Kuo, D., Mckeown, M.: Advance reservation and co-Allocation protocol for grid
computing. In: 1st Int’l Conference e-Science and Grid Computing, p. 8 (2005)

4. Aridor, Y., Domany, T., Goldshmidt, O., Moreira, J.W., Shmueli, E.: Resource
Allocation and Utilization in the Blue GeneL Supercomputer. IBM Journal of
Research and Development 49(2-3), 425–436 (2005)

5. Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic models for resource
management and scheduling in grid computing. Concurrency and Computation:
Practice and Experience 14, 1507–1542 (2002)

6. Reed, A.D., Lu, C.-d., Mendes, C.L.: Reliability challenges in large systems. Future
Generation Computer Systems 22(3), 293–302 (2006)

7. Karonis, N.T., Toonen, B., Foster, I.: MPICH-G2: A Grid-enabled implementation
of the Message Passing Interface. Journal of Parallel and Distributed Comput-
ing 63(5), 551–563 (2003)

8. Dail, H., Berman, F., Casanova, H.: A decoupled scheduling approach for grid
application development environments. Journal of Parallel and Distributed Com-
puting 63(5), 505–524 (2003)

9. Venugopal, S., Buyya, R., Winton, L.: A grid service broker for scheduling e-science
applications on global data grids. Journal of Concurrency and Computation: Prac-
tice and Experience 18(6), 685–699 (2005)

10. Raman, R., Livny, M., Solomon, M.: Policy driven heterogeneous resource co-
allocation with gangmatching. In: Proc. of the 12th IEEE Int’l Symposium on
High Performance Distributed Computing (HPDC-12), pp. 80–89 (2002)

11. Irwin, I., Chase, J., Grit, L., Yumerefendi, A.: Self-recharging virtual currency.
In: Proc. of the 2005 ACM SIGCOMM Workshop on Economics of Peer-to-Peer
System, pp. 93–98 (2005)

12. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Com-
plete Reference. MIT Press, Cambridge (1996)

13. Andreozzi, S., Sgaravatto, M., Vistoli, C.: Sharing a conceptual model of
gridresources and services. Computing in High Energy and Nuclear Physics, 24–28
(2003)

14. Lacour, S., Perez, C., Priol, T.: A network topology description model for grid
application deployment. In: Proc. 5th IEEE/ACM Int’l Workshop on Grid Com-
puting, pp. 61–68 (2004)

http://setiathome.ssl.berkeley.edu

Explicit Control of Service Execution to Support

QoS-Based Grid Scheduling

Claudia Di Napoli and Maurizio Giordano

Istituto di Cibernetica “E. Caianiello” - C.N.R.
Via Campi Flegrei 34, 80078 Pozzuoli, Naples - Italy

{c.dinapoli,m.giordano}@cib.na.cnr.it

Abstract. Grid scheduling is shifting from a system-centric approach
towards a user-centric one, i.e. service provision is driven by both user
and provider-dependent Quality-of-Service (QoS) requirements. In this
scenario, the possibility to explicitly control the execution of services al-
lows providers to make different decisions on the QoS they provide their
services with according to the requirements of new service requests. In
the present work an infrastructure that allows providers to dynamically
adapt the execution of services according to both the changing condi-
tions of the environment where they operate in, and the requirements of
service users is presented. The infrastructure is based on program con-
tinuations to provide service schedulers with application-level primitives
to handle suspension and resuming of service execution. The same primi-
tives are also accessible as web service operations by consumer programs
so allowing to change QoS parameters of requested services at run-time.
This approach makes the proposed infrastructure a flexible and easily
programmable middleware to experiment with different scheduling poli-
cies in service-oriented scenarios. As a case of study, we show that on top
of a time-sharing low-level scheduling, a provider can adopt a high-level
scheduling policy using service suspension and resuming primitives so
that consumer priority requirements can be met at run-time.

1 Introduction

Computational grids represent the new research challenge in the area of dis-
tributed computing. They aim to provide a unified computational infrastruc-
ture composed of geographically distributed heterogeneous resources cooperating
with each other through middleware software to enable usage of the collection
of these resources in an easy and effective manner.

In the present work a service-oriented approach is adopted as described in
[1], where grid resources are abstracted as grid services, i.e. computational ca-
pabilities exposed to the network through a set of well-defined interfaces and
standard protocols used to invoke the services from those interfaces, and they
have to be identified, published, allocated, and scheduled. Services are not sub-
ject to centralized control (i.e. they live within different control domains and
they do not rely on a central management system), they use standard, open,

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 245–256, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

246 C. Di Napoli and M. Giordano

general-purpose protocols and interfaces (i.e. not application-specific), and they
can be combined in order to deliver added value functionalities so that the utility
of the resulting system is significantly greater than the sum of its parts. In order
to provide such a computational infrastructure, grid technologies should support
shared and coordinated use of diverse resources in a dynamic environment [1].

A service is provided by the body responsible for offering it, we refer to as ser-
vice provider, for consumption by others, we refer to as service consumers, under
particular conditions. In this view, service providers (that can be individuals, or-
ganizations, groups, government, and so on) are independent and autonomous
entities representing the interface between a service consumer and a required
functionality, i.e. a grid service. Users will be able to access and share these
computational capabilities on demand over the Internet, relying on an infras-
tructure that is expected to be resilient, self-managing, and always available,
and above all that is perceived as a unified framework by end users.

A service request is fulfilled when the consumer requirements can be met by
the service provider that received the request, i.e. when consumers Quality-of-
Service requirements can be met by providers Quality-of-Service capabilities [2].
The term Quality-of-Service is used in a general sense referring to a very wide
range of non-functional service characteristics. It is beyond the scope of the
present work to study how complex the quality of a service can be, and how to
characterize it, i.e. how many parameters should be considered and how it can
be represented. This is mainly a domain-specific problem.

In this approach, service providers architectures must include mechanisms for
the provision of known quality levels and for the possibility to change quality
levels when necessary. So, providers need to have control on the execution of
their services in order to accommodate for the changing conditions under which
a service could be supplied. In such a way providers are able to decide at run-time
“how” to fulfil a service request, i.e. what Quality-of-Service they can supply.

In this work we present an infrastructure to model service providers to control
the execution of services at application level, by allowing for service suspension
and resuming in a way similar to process preemption in traditional operating
system design. The infrastructure relies on continuation programming paradigm
[3] to support service execution state saving and restoring: by managing program
continuations service providers can change at run-time parameters affecting ser-
vice provision either driven by consumer or system requirements.

In order to test the flexibility of the infrastructure, a cost-based time-sharing
scheduling algorithm has been implemented and tested to show how different
scheduling behaviours can be obtained at application level without relying on
operating system facilities.

The rest of the paper is so organized: section 2 describes the service provider
architecture that provides service execution control by means of user-level pre-
emption mechanisms; section 3 discusses the cost-based resource sharing schedul-
ing policy implemented in a service application scenario; section 4 reports the
results obtained experimenting with the implemented scheduling policy; finally
section 5 reports some concluding remarks.

Explicit Control of Service Execution 247

...

Waitqueue

...

...

Service
Provider

Service
Scheduler

Runqueue

Suspend

Expirequeue

Finished

WS Client

Resume

Service Service

Service

u-thread

Service

Service

u-thread
Expiring

Terminated

Running

Suspended

finished

resume

suspend

kill
expired

Web Service State
Transition Diagram

kill

Srv Result

Expired

submit

u-thread

u-threadu-threadu-thread

Submit

SOAP

Kill

Request
Handler

Fig. 1. Services provider architecture and service state transition

2 Service Provider Architecture

In order to be able to provide services that meet Quality-of-Service requirements
of both service consumers (e.g. cost, response time) and service providers (e.g.
throughput, profit, CPU utilization), it is crucial to be able to control the exe-
cution of services in accordance with new events occurring in the environment
since these requirements cannot be statically determined.

Service preemption mechanisms are a way to provide full control of service
execution and they can be implemented (or simulated) using several approaches,
both at application and operating system level. For example, at application level
the Java language provides (deprecated) thread suspension/resuming support.
Other approaches as [4] use signals (SIGSTOP/SIGCONT) available in most oper-
ating systems.

The main objective of the proposed service provider architecture is to provide
application-level preemption of services in order to support the development of
dynamic policies for service execution at programming level. Service preemption
is provided at application-level by using program continuations.

A continuation relative to a point in a program represents the remainder of
the computation from that point [3], so a continuation is a representation of
the program current execution state. Continuation capturing allows to package
the whole state of a computation up to a given point. Continuation invocation
allows to restore the previously captured state restarting the computation from
that point. Although any programming system maintains the current continua-
tion of each program instruction it evaluates, these continuations are generally
not accessible to the programmer. Some programming languages provide first-
class continuations, i.e. data objects that may be named by variables, passed
as arguments to procedures, returned as results of procedures, and included in
data structures [5]. The possibility to handle continuations as first-class objects

248 C. Di Napoli and M. Giordano

together with constructs to capture and resume continuations allow to build in
a hosting programming environment lightweight user-level threads that can be
scheduled at application level.

The proposed service provider architecture can be implemented using a host-
ing language supporting first-class continuations management. The current im-
plementation is in Stackless Python [6] that supports user-level threads based on
continuations, named tasklets. The Python scripting language offers a fast proto-
typing and testing programming environment for the proposed SOA framework,
with minor performance penalties compared to other languages like C. Further-
more, Python is one of the languages that provides a satisfactory support of
libraries and tools for the development of web services.

We designed a service provider equipped with mechanisms to process, from
time to time, arrival of notification messages in order to suspend and resume
the execution of a service it is providing by respectively capturing and restoring
its continuation. The control of service execution can be driven both by the
service provider itself and by any client program. Service preemption, driven or
not by client requests, is carried out by the provider storing at the preemption
points the execution state (the continuation) of the specified service. A client
program may represent either a service consumer that requires a service result,
or a metascheduler or a service broker trying to adapt local service execution
policies so that resources can be shared in a reliable and efficient way in a
heterogeneous and dynamically changing environment like the grid.

The architecture, depicted in figure 1, is represented by a service container
consisting of a pool of lightweight user-level threads, named u-threads whose
implementation supports thread suspension and resuming at application level.
U-threads are the wrapping execution contexts of web service operations, so
u-threads suspension and resuming methods are means to control web service
executions. Web service operations are supplied as parameters to u-threads and
executed within their context. Thus the wrapping guarantees the required func-
tionalities to suspend and resume web service operations. In the rest of the paper
the term service instance refers to the execution of a web service operation.

A u-thread and the enveloped service instance can be in the following states:

– running: the service instance is executing or ready to be scheduled for execu-
tion; all running services are kept in the Runqueue and by default executed
in time-sharing mode by assigning to each u-thread a time quantum.

– suspended: the service instance is not terminated yet, but cannot be sched-
uled for execution; all suspended services are maintained in the Waitqueue;

– expiring: the service instance terminated, but the descriptor of the wrap-
ping u-thread is still alive to make the service result available for successive
requests; all expiring services are kept in the Expirequeue;

– terminated: the service instance terminated and the descriptor of the wrap-
ping u-thread is freed and no longer available (in the Expirequeue) because
either a specified expiration time elapsed, or the client requested and ob-
tained the service result before the expiration time. The expiration time

Explicit Control of Service Execution 249

is not necessarily a system parameter, and it could be specified as a QoS
parameter at the service submitting phase.

The main u-thread, named Service Scheduler, represents the execution context
of the service provider and it is always in the running state. It interleaves service
scheduling activities with processing of incoming requests from clients performed
by the Request Handler, the module responsible for probing incoming SOAP
messages. A client may request the invocation of a service (service submission)
or force the state transition of an already invoked service (suspending, resuming
or killing the service).

In order to provide clients with full control of service execution we defined and
implemented a web service exposing the following WSDL operations: submit,
suspend, resume and kill. They represent meta-operations because they are
invoked by clients to control and monitor web service executions.

When the client invoke one of these operations an asynchronous request/
response interaction with polling [7] takes place. Asynchronicity allows the client
to proceed the computation concurrently with the web service execution until
the operation result is required. At this point the client needs to synchronize
with the provider and it establishes a new communication to retrieve the result:
this is carried out by the probe request.

The Request Handler processes each client request by executing the corre-
sponding system-internal primitive available at the Service Scheduler level to
control service execution. The primitives are: submit, suspend, resume, kill (black
arrows in the state transition diagram of figure 1).

While service submission and killing are always carried out upon requests
from clients, service suspension and resuming can be also invoked by the Service
Scheduler to implement a particular scheduling policy that uses service preemp-
tion at programming level.

The submit primitive creates a new u-thread wrapping up a specified service
operation and puts it in the running state.

The Service Scheduler maintains three queues to manage u-threads, together
with the corresponding wrapped service instances, in different states:

– Runqueue contains all service instances running or ready to be scheduled
for execution. Services in this queue are by default executed in time-sharing
mode by assigning to each u-thread a time quantum.

– Waitqueue contains all service instances suspended and thus removed from
the Runqueue. The provider may decide to suspend or resume service ex-
ecution according to its own scheduling policy, and upon receiving specific
SOAP requests from an external application, e.g. a metascheduler.

– Expirequeue contains all u-threads descriptors wrapping up terminated
service instances whose results are not requested yet by clients via SOAP
messages. U-threads are maintained in an inactive state in this queue to
temporarily store unused service results until a certain expiration time is
elapsed. The expiration time is not necessarily a system specific parameter,
and it could be specified as a QoS parameter at the service submitting phase.

250 C. Di Napoli and M. Giordano

service priorities

recomputed

service submission/kill

from consumers

are applied

scheduling epoch

quantum

scheduling interval

round-robin time-sharing

. . .

. . .

. . .

service suspended by scheduler

during time-sharing are resumed

service suspension/resuming

from consumers

are computed (QoS changes)

time t

j=1 j=K

Q

S

Fig. 2. Two-level scheduling policy

3 QoS-Based Service Scheduling

In order to reach the full potential of grid computing, it is well-recognized that
the grid needs to shift towards production-oriented scenarios in which service
providers are motivated to make available the resources they provide.

A computational economy approach can be used to provide the possibility
of buying and selling computational resources in the same way as goods and
services are bought and sold in the real world economy [8]. Adopting a com-
putational economy-based view [9] where services are provided at a given cost
constitutes per se a mechanism for encouraging resource owners to contribute
their resource(s) for the construction of the grid, and compensate them based on
the resource usage, i.e. on the value of the work done. So, the ultimate success
of computational grids as a production-oriented commercial platform for solving
problems is critically dependent on the support of economy-based mechanisms
to resource management. In such “commercial” computational grids, resource
owners act as service providers that make a profit by selling their services to
users that act as buyers of computational resources for solving their problems.

Economic-based grids represent the reference application scenario of the
present work, so that QoS parameters include a cost of the service to be pro-
vided. In our framework it is possible to associate to a service request a qos
parameter taking into account the cost of the service so both the client and the
provider may use its value to drive service execution scheduling.

3.1 A Two-Level Scheduling Policy

The scheduling algorithm presented here is a variant of the one proposed in [4].
In our application scenario each service execution request is submitted with

a cost parameter. The service cost ci is a positive floating number greater than
0.1. The value 0.1 is assumed as the default value the provider assigns to services
with no cost specification. The consumer may request services with associated
costs greater than 0.1. The service provider agrees with the consumer to execute

Explicit Control of Service Execution 251

the required service with a priority given by the following expression (once its
state becomes runnable):

pi =
ci

∑N
j=0 cj

(1)

where N is the total number of “alive” services at a certain execution time: a
service is said to be “alive” if it is either in the suspended or in the running
state, as defined in section 2. Thus, by definition, pi is in the interval (0, 1].

The scheduling algorithm is described in figure 2. It consists of a two levels
scheduling, named scheduling epochs and scheduling intervals.

Scheduling epochs. A scheduling epoch consists of a fixed-sized sequence of
scheduling intervals of time. The number of scheduling intervals is a parameter
of the scheduler.

In each interval a time-sharing policy is adopted to allocate a set of time
quanta to services in the Runqueue.

Priorities are recomputed just before the beginning of each epoch. At that
time the client requests, arrived during the previous epoch, are processed; thus
new service submission and deletion messages sent by clients may change prior-
ities of all service running in the system. By the priority definition given in (1)
service suspension and resuming requests do not change the priority values of
all “alive” services. Service submission and deletion requests respectively adds
and subtracts an “alive” service thus changing the priority of services.

With this assumption processing suspension and resuming requests can take
place within scheduling intervals without requiring priority recomputation. Sub-
mission and deletion requests are processed only just before the beginning of a
new epoch. At that time, new services are added to the Runqueue and priorities
are updated accordingly before new service instances may start. To implement
this strategy we used a Readyqueue to buffer service submissions occurring dur-
ing the current epoch, to move them in the Runqueue before the beginning of
the next epoch to start new service executions.

Within an epoch service priorities are assumed to be constant although the
number of running services may change due to service termination. This is a min-
imal inaccuracy in priority estimation compared to the extra overhead produced
by frequent priority updates.

Scheduling intervals. In a scheduling interval the available time quanta are
allocated to services in the Runqueue. During a scheduling interval incoming
client messages are not processed because they are served at the next scheduling
interval (or the next epoch).

All scheduling intervals have the same number of equal-sized quanta: the
number of quanta (S) for each interval and the quantum size (Q) are scheduling
parameters that are fixed once the service container object is instantiated.

Let t be the time relative to an epoch, where t = 0 at the beginning of each
epoch. Let j = 1, . . . , K be the index of the current interval in the epoch. For
any t within an epoch ni(t) is the number of quanta used by a service instance i

252 C. Di Napoli and M. Giordano

starting from the beginning of the epoch. So, ni(t)Q is a measure of the cpu time
spent during the epoch by the service at the time t. A measure of the service
utilization time ui(t), referred to one epoch, at time t is given by the expression:

ui(t) =
ni(t)
jS

(2)

When service submissions are computed before an epoch starts, new instances for
requested services are added (in the arrival order) to the head of the Runqueue.

When an epoch starts, the scheduler gets a service from the head of the
Runqueue and runs it for one quantum. During the quantum the service instance
may end its execution: in such a case it is moved to the Expirequeue to wait for
the client request of the service computation result.

If the service does not terminate, the scheduler checks if a new quantum in
the same interval can be allocated to the service: if the service utilization time
is less than its priority at time t (i.e. ui(t) < pi), the service is put in the tail
of the Runqueue, thus having another chance to run in the same or in the next
interval of the same epoch. Otherwise it is suspended by the scheduler and put
in the Waitqueue. In other words, a service is suspended if the ratio between the
quanta used from the start of the epoch and the total elapsed quanta (including
those passed in suspension), is greater than its priority.

When all quanta in the scheduling interval have been used, or no more services
are in the Runqueue, the scheduling interval ends. Before the next epoch starts,
the scheduler resumes all suspended services in the Waitqueue with the exception
of threads whose suspension was explicitly requested by clients, that can be
reactivated only by clients through resume requests.

4 Experimental Results

We performed some preliminary experiments with the scheduling policy by simu-
lating the execution of service instances. The experiments were carried out to test
the soundness of the scheduling algorithm implemented for the economy-based
service provider of our case study. The scheduling algorithm is not evaluated
against efficiency and performance metrics. In fact our purpose is to show how
the proposed framework provides mechanisms to implement and experiment with
a large variety of scheduling policies.

In the first set of experiments, services are submitted with randomly normal-
distributed costs in the open interval (0, 1). The results are showed in figure 3
that shows the utilization time assigned by the scheduler to ten services running
for ten epochs varying the number of both quanta per interval and intervals per
epoch, so the global execution time is constant (30 seconds). The results allow
to identify a configuration of the scheduling parameters before mentioned that
satisfies the requested service priorities. In fact, as a general result it is shown
that when the number of used quanta is 3 or more times the number of requested
services, the utilization time is close to the requested service priorities and the
effect of the number of scheduling intervals is not relevant.

Explicit Control of Service Execution 253

 0

 0.05

 0.1

 0.15

 0.2

0 1 2 3 4 5 6 7 8 9

U
til

iz
at

io
n

T
im

e

Services Requests

Priority
quanta=60/intervals=05
quanta=30/intervals=10
quanta=20/intervals=15
quanta=15/intervals=20
quanta=10/intervals=30
quanta=05/intervals=60

Fig. 3. Service utilization time varying the number of both the intervals and the epochs,
with fixed system running time

 0

 5

 10

 15

 20

 25

 30

 35

05/60 10/30 15/20 20/15

E
xi

t e
po

ch
fo

r
th

e
si

ng
le

 r
eq

ue
st

 w
ith

 c
os

t "
C

"

n. intervals per epoch/n. quanta per interval

10 concurrent requests with the same running time (1000 quanta)
one request with cost "C"
other requests with costs = 0.1

C=30
C=20
C=10
C=5
C=1

C=0.5
C=0.2

Fig. 4. Service execution time in the case of a single request with high cost

In the second set of experiments we evaluated how the service execution time
varies by incrementing the associated costs, and consequently its priority.

We considered two situations: in the first there is one request with priority
higher than the one associated by the provider scheduler as default (i.e. 0.1)
to the other concurrent requests (see figure 4); in the second scenario 50% of
the requests has priority higher than the default value (see figure 5). In both

254 C. Di Napoli and M. Giordano

 0

 5

 10

 15

 20

 25

 30

 35

05/60 10/30 15/20 20/15

E
xi

t e
po

ch
fo

r
th

e
re

qu
es

ts
 w

ith
 c

os
t "

C
"

n. intervals per epoch/n. quanta per interval

10 concurrent requests with the same running time (1000 quanta)
half of requests with costs "C"
the other half with costs = 0.1

C=30
C=20
C=10
C=5
C=1

C=0.5
C=0.2

Fig. 5. Service execution time in the case of 50% of requests with high costs

scenarios we assume that the concurrent requests have the same execution time
(1000 quanta of time).

The set of concurrent requests is limited to 10. As mentioned before, when the
number of concurrent requests increases (more than one hundred), by assuming
a minimal default cost of 0.1 it follows, by definition (1) that priorities are very
small also if costs are one order of magnitude greater than the default. In this case
the scheduling policies converges to a time-sharing policy without considering
the required priorities.

In the graphs we show also the execution time changes according to different
settings of scheduling parameters, i.e. the number of quanta per interval and the
number of intervals per epoch. Like in the previous tests, the parameter values
are set in order to guarantee the same epoch duration in all cases (300 quanta
per epoch).

The graph of figure 4 reports how the execution time of a single high priority
service request decreases by increasing its cost (the parameter C in the graph).
The longest execution time for the service is 34 epochs corresponding to a service
submission with the minimal (default) cost. From the graph we see how in this
case by doubling the cost (C = 0.2) we obtain almost a 40% of reduction in
the execution time. By increasing the cost up to ten times (C = 1) the default
one, the runtime reduction ranges from 70% to 85% by reducing the number of
scheduling intervals per epoch. Of course the simulation reproduces a synthetic
test: we used it to show the expected execution time reduction in the best case,
i.e. when our service submission has the highest cost in the service running set.

In the graph of figure 5 we report the execution time of half of the service
requests, submitted with the same cost C. As a general comment of this test, the
runtime reduction is minor than the previous case although it is less sensible to
cost increases as well as the scheduling parameter settings. In fact the execution

Explicit Control of Service Execution 255

time gain ranges from 25% to 45% in the best case. The synthetic test shows
that with many (50%) service requests all with the same cost greater than the
default value, the limited gain is not significantly affected by increasing the cost.

Differently from the previous testbed, in the graphs of figures 4 and 5 we
did not reported the measurements corresponding respectively to the scheduling
parameters 30/10 and 60/05 because in such cases the number of requests is
in the order of the number of quanta per interval, and so, as outlined in the
previous experiment, there is no accounts of service costs.

5 Related Works and Conclusions

In this work we propose a service provider architecture based on continuation
management to provide primitives to control web services execution and to im-
plement service scheduling policies at application level. The primitives are offered
by the service provider to external (client) applications through SOAP messages.

With this approach we may implement the service execution policies at two
levels: the lower level relies on the service provider layer to implement local
schedulers; the higher level can be a metascheduler that interacts with multiple
service provider schedulers in a distributed setting to coordinate them by means
of SOAP messaging.

Existing web service frameworks (Axis, WebSphere, etc.) make it difficult to
implement a service provider architecture with preemption mechanisms of web
services without a deep changing of the control patterns usually implemented as
a built-in feature. This is because they usually obey to the Inversion of Control
(IoC) programming pattern [10] widely used in most Java and object-oriented
web-application environments. So, web service instantiation and life-cycle man-
agement cannot be fully controlled by programmers who add web services to
the framework. For this reason, existing web service frameworks are not suitable
to provide an application-level control of service execution supporting service
suspension and resuming.

In [4] the authors propose a user-level framework for service execution schedul-
ing. Our economy-based two-level scheduling algorithm is based on the one pro-
posed in [4]. But we decided to split scheduling activities in two layers in order to
interleave scheduling and communications activities. On the contrary, in [4] the
scheduling epoch layer is introduced to measure the fairness of the scheduling
algorithm, rather than actually use it for specific purposes.

In our work epochs are introduced as scheduling points when new service sub-
missions are scheduled so that overhead due to priorities recomputing is limited.
Furthermore the service scheduling framework proposed in [4] accomplish ser-
vice (thread) suspension and resuming using the signals API of the underlying
OS. Thus, although a user-level scheduler with a priority-based policy is pro-
posed to control service execution, the system is depending on the underlying
OS layer to properly work. In our system also the lower scheduling layer, i.e. the
timesharing stage, is implemented at application-level by means of continuations
programming.

256 C. Di Napoli and M. Giordano

So, the proposed continuation-based service provider features programmable
and full control of generic web service executions that does not depend on the
OS layer. Thus portability can be guaranteed across heterogeneous program-
ming environments with explicit support of continuation capturing and resum-
ing. This choice makes the framework flexible and easily adaptable for developing
and experimenting scheduling facilities, policies and service-control in different
service-oriented architecture applications.

We need to carry out more experiments that take into account the arrival of
new service requests as well as the priority changes during execution. These tests
will give us the possibility to study the scheduling algorithm behavior in more
dynamic settings. In this scenario we are confident that the epoch size will be a
relevant tuning parameter in order to adapt service utilization time to priority
changes.

References

1. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid: An open
grid service architecture for distributed system integration. Technical report Open
Grid Service Infrastructure WG (2002)

2. MacLaren, J., Sakellariou, R., Garibaldi, J., Ouelhadj, D.: Towards service level
agreement based scheduling on the grid. In: Proceedings of the second European
Across Grids Conference (2004)

3. Friedman, P., Haynes, C.T., Kohlbecker, E.E.: Programming with Continua-
tions. In: Program Transformation and Programming Environments, pp. 263–274.
Springer, Heidelberg (1984)

4. Newhouse, T., Pasquale, J.: A user-level framework for scheduling within service
execution environments. In: Proceedings of the 2004 IEEE International Conference
on Services Computing (SCC 2004), Washington, DC, USA, pp. 311–318. IEEE
Computer Society (2004)

5. Abelson, H., Sussman, G.J.: Structure and Interpretation of Computer Programs,
2nd edn. MIT Press, Cambridge (1993)

6. Tismer, C.: Stackless python (2007), http://www.stackless.com
7. Giordano, M., Di Napoli, C.: A Continuation-Based Framework for Economy-

Driven Grid Service Provision. In: Veit, D.J., Altmann, J. (eds.) GECON 2007.
LNCS, vol. 4685, pp. 112–123. Springer, Heidelberg (2007)

8. Wooldridge, M.: Engineering the computational economy. In: Proceedings of the
Information Society Technologies Conference (IST–2000), Nice, France (2000)

9. Buyya, R., Abramson, D., Giddy, J.: An economy driven resource management
architecture for global computational power grids. In: Proc. of PDPTA 2000, Las
Vegas, USA (2000)

10. Fowler, M.: Inversion of control containers and the dependency injection pattern
(2004), http://www.martinfowler.com/articles/injection.html

http://www.stackless.com
http://www.martinfowler.com/articles/injection.html

Parallelization and Distribution Strategies of

Large Bioinformatics Requests over the Grid

Eddy Caron, Frédéric Desprez, and Gaël Le Mahec

1 University of Lyon, ENS Lyon, INRIA
2 LIP. UMR 5668, ENS Lyon, INRIA, CNRS, UCBL, France

3 LPC de Clermont-Ferrand, CNRS, IN2P3, UBP Université Blaise Pascal, France
lemahec@clermont.in2p3.fr

Abstract. This paper focuses on simultaneous scheduling of computa-
tion and data replication for life science applications on the grid. We
present an adaptive algorithm based on the SRA algorithm (Static Joint
Replication and Scheduling) [4] with more dynamicity for the jobs fre-
quencies. The use of a linear program giving a databases mapping on the
nodes and a jobs distribution schema, ensures us that our data place-
ment and jobs distribution will be near the optimal solution, as long as
the informations about the jobs frequencies are right. We validate our
results with large jobs submissions simulations on a realistic platform.

1 Introduction

Since the eighties, biological databases have grown exponentially. The treatments
or searches on databases that were taking few minutes can now take several
days. Due to the geographical distribution of the life science laboratories and
the computation power and storage capacity needs, grid computing is a good
way to improve and simplify the resources sharing. In this paper, we will discuss
how to distribute data and jobs among the nodes of a grid to improve the
performance of the submission of bioinformatics jobs. In [4], the authors present
a scheduling strategy called SRA (Static Joint Replication and Scheduling) based
on the hypothesis that, if a large enough time interval is chosen, the proportion
of a job using a data is always the same. This paper presents an adaptation of
the SRA algorithm when these jobs proportions are varying.

The rest of the paper is organized as follows. In the next section, we describe
the problem that our algorithm must deal with and we recall how the SRA
algorithm is working. In Section 3, we present the algorithm itself. Section 4 is
devoted to the experiments with comparisons to the SRA scheduling algorithms.
The last section presents the conclusion and future works.

2 Problem Description

We have:

– {dj}j∈[1..n]: n databases of respective size sizej.

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 257–260, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

258 E. Caron, F. Desprez, and G. Le Mahec

– {Si}i∈[1..m]: m servers with mi and wi as storage and computational capacities.
– {ak}k∈[1..p]: p algorithms of linear complexity with αk × sizej + ck the com-

putational power needed to execute the algorithm ak on dj . Such a request
is noted Rk,j .

The time to execute a request on a node depends on the size of the database.
Each job is submitted to a Resource Broker which chooses a Computing Element
to queue the job on it. When a job is queued on a Computing Element, it waits
for the next worker node that can execute it, with a FIFO policy. The objective
is to ensure the better throughput of the platform.

We present here a brief description of the SRA algorithm:

Let δj
i =

{
1 if there is a replica of dj on Si,
0 otherwise.

Let ni(k, j) be the number of requests Rk,j to be executed on Si.

Let vk,j =
{

1 if Rk,j is a possible request,
0 otherwise.

Let TP be the platform throughput.

The following linear program gives a data mapping on the servers and, for each
kind of job, where they should be executed.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

j=1

δj
i ≥ 1 Each data is on the platform.

n∑

j=1

δj
i · sizej ≤ mi Storage capacity is limited.

ni(k, j) ≤ vk,j .δ
j
i .

wi

αk·sizej+ck
Computing capacity is limited.

p∑

k=1

n∑

j=1

ni(k, j)(αk · sizej + ck) ≤ wi Computing capacity is limited.
m∑

i=1

ni(k, j) = fk,j · TP Requests frequencies.

The integer solution approximation is then obtained by an approximation
algorithm.

3 Dynamic Databases Redistribution and Job Scheduling

Using the SRA algorithm, when the frequencies of each type of request do not
vary, we obtain very good results. But if the frequencies vary during the sub-
mission process, performance will significantly decrease. Our algorithm tries to
correct this by observing each job frequency and recomputes the ni(k, j) jobs
distribution values and the data placement matrix δj

i . Let us denote:

– N : the minimum number of requests to evaluate the frequencies.
– ε: the frequency variation threshold beyond which we decide to recompute

the SRA linear program.

Parallelization and Distribution Strategies 259

Algorithm 1. Dynamic SRA algorithm.
1: initialize(fk,j)
2: nb ←− 0
3: δj

i , ni(k, j) ←− SRA(fk,j)
4: while There is request Rk,j to schedule do
5: Add Rk,j in f ′

k,j

6: if nb ≥ N && ∃k, j such |fk,j − f ′
k,j | ≥ ε then

7: δj
i , ni(k, j) ←− SRA(f ′

k,j)

8: Data redistribution(δj
i) (if asynchronous data redistribution)

9: fk,j ←− f ′
k,j

10: nb ←− 0
11: Reinitialize(f ′

k,j)
12: end if
13: Schedule Rk,j according to ni(k, j)
14: end while

The algorithm starts with the initialization of the frequencies and the data and
job placement computing (l. 1 to l. 3). The main loop of the algorithm (from
l. 4 to l. 14) starts with the record of the new job submission (l. 5). Then, if
enough jobs have been recorded (nb ≥ N) and if a measured frequency is too
different from the previously used one for the SRA algorithm (|fk,j − f ′

k,j | ≥
ε), the algorithm recomputes δj

i and ni(k, j) (l. 7). If it is possible, the data
redistribution can then be launched asynchronously by the algorithm. Otherwise,
the job scheduling will cause the data transfers to reach the new data placement.
The loop ends with the choice of a node to execute the job using the ni(k, j)
values.

4 Experiments

In this section we present the results obtained on simulations using OptorSim [2],
a grid simulator developed by the CERN for the DataGrid project [5]. The data
used for the applications can be obtained from the platform or some external
public ftp sites. The data sizes vary from 1 GB to 5 GB. Jobs are submitted with
a rate of 1 job per 3.5 seconds. The data are distributed randomly among the
nodes at the beginning of the process. For our experiments we used a network
of 9 sites which have from 90 to 680 worker nodes of different computation
power. Without correction of the data replication and job distributions over the
nodes, the frequencies variations decrease the efficiency of the SRA algorithm
(see Figure 1). The frequencies variations have few effect when the jobs submitted
are not numerous. But, after few time, with a large set of jobs, the platform
starts to saturate in spite of data replication. Then, the average waiting time of
the jobs increases with the number of jobs submitted. By correcting the data
and job distributions when detecting a significant change in the frequencies, our
algorithm limits the platform saturation (see Figure 2).

260 E. Caron, F. Desprez, and G. Le Mahec

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 2000 4000 6000 8000 10000 12000

T
im

e
in

 s
ec

on
ds

.

Jobs submitted.

Total time average.
Execution time average.

Waiting time average.

Fig. 1. Simple SRA algorithm

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 2000 4000 6000 8000 10000 12000

T
im

e
in

 s
ec

on
ds

.

Jobs submitted.

Total time average.
Execution time average.

Waiting time average.

Fig. 2. Dynamic SRA algorithm

5 Conclusion and Future Work

In this paper, we proposed a dynamic job and data replication scheduling al-
gorithm for the grid taking into account the specificities of the grid usage for
bioinformatics. Using only some informations collected by the scheduler itself,
this algorithm avoids the use of complex grid monitoring services and could be
easily and effectively used in the context of bioinformatics grids.

In this paper, the database redistribution uses a fixed strategy to choose
when and from where the data have to be transfered. The redistribution is itself
a hard problem and we will study different strategies in a future work. Our
algorithm will also be tested on Grid’5000 [1], a reconfigurable and heterogeneous
grid dedicated to the computer science experimentations. We will use the DIET
middleware [3] to which we already added an advanced data manager.

References

1. Bolze, R., Cappello, F., Caron, E., Daydé, M., Desprez, F., Jeannot, E., Jégou, Y.,
Lanteri, S., Leduc, J., Melab, N., Mornet, G., Namyst, R., Primet, P., Quetier, B.,
Richard, O., Talbi, E.-G., Touché, I.: Grid 5000: A Large Scale and Highly Recon-
figurable Experimental Grid Testbed. International Journal of High Performance
Computing Applications 20(4), 481–494 (2006)

2. Cameron, D.G., Carvajal-Schiaffino, R., Millar, A.P., Nicholson, C., Stockinger, K.,
Zini, F.: Evaluating scheduling and replica optimisation strategies in OptorSim. In:
Proc. Fourth International Workshop on Grid Computing, 2003, pp. 52–59 (2003)

3. Caron, E., Desprez, F.: Diet: A Scalable Toolbox to Build Network Enabled
Servers on the Grid. International Journal of High Performance Computing Ap-
plications 20(3), 335 (2006)

4. Desprez, F., Vernois, A.: Simultaneous Scheduling of Replication and Computation
for Data-Intensive Applications on the Grid. J. of Grid Computing 4(1), 19–31
(2006)

5. Donno, F., Gaido, L., Ghiselli, A., Prelz, F., Sgaravatto, M.: Datagrid prototype 1.
In: TERENA Networking conference (June 2002)

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 261–264, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Designing an Architecture for Distributed Shared Data
on the Grid

Dacian Tudor1, Vladimir Cretu1, and Wolfgang Schreiner2

1 “Politehnica” University of Timisoara, Computer Science and Engineering Department,
Vasile Parvan Street, No. 2, 300223, Timisoara, Romania

{dacian,vretu}@cs.upt.ro
2 Research Institute for Symbolic Computation (RISC)

Johannes Kepler University, 4040 Linz, Austria
Wolfgang.Schreiner@risc.uni-linz.ac.at

Abstract. Despite the continuous advances of the last years in grid computing,
the grid computing programming paradigms are dominated by the message
passing concept. There is little support for other paradigms such as shared data
or associative programming. In this paper we analyze some of the existing solu-
tions for grid shared data programming and highlight some of their drawbacks.
We propose a new architecture and its core features as well as new evaluation
means of its behavior in various scenarios including the next generation grid
systems. In addition to the simplicity of our solution, we believe that it would
allow us to easily apply further extensions.

Keywords: grid computing, distributed shared data, programming model.

1 Introduction

Although the number of networked machines has been constantly increased, the num-
ber of new distributed applications is still much lower. Some of the core issues that
are faced by distributed applications are due to latencies, synchronization and partial
failures. Only on dedicated grids ideal conditions can hold during the entire applica-
tion lifetime. Next, the increasing heterogeneity and the greater difficulty to replace
large spread legacy systems impose an important break on grid application develop-
ment. One of the answers we believe to these challenges is in the grid programming
model and more specifically in grid shared data programming.

In the grid landscape, there are very few solutions for large scale data sharing mod-
els. Solutions like the LOTS system [1], SMG [2] or Teamster-G [3] that addresses
the shared memory problem at the grid level does not provide important information
like detailed design, replication policies, mutual exclusion handling, and memory
consistency specification. Besides the missing information, there is little evidence of
their suitability or behavior in large scale grid computing. A new direction towards
dependable distributed computing systems that aim to improve both data and service
availability is aimed by Dedisys [4], which appears to focus on availability and fault
tolerance at the system level rather than performance. Most advanced solution for grid

262 D. Tudor, V. Cretu, and W. Schreiner

shared data programming that came to our knowledge is JuxMem [5], which is based
on peer-to-peer middleware. One of its main drawbacks is the fixed replication
scheme that bounds data replicas at creation time or when fault occur, and which does
not consider the system dynamics such as data usage patterns.

We have noticed that there are few shared memory systems designed for the grid.
Many of these systems were tested in particular environments that represent ideal sce-
narios of fast connected machines most of the times being grouped as high performance
clusters. In search for a better approach, we aim to investigate the problem of distributed
shared memory for grid systems and provide a system specification that addresses the
following main points we found missing in most of the existing solutions:

(1) Large scale system over large latency connections, which are dominant
between machines located at large distances.

(2) Relaxed consistency and type coherence, as we expect that relaxed consis-
tency does not carry sufficient information on data usage.

(3) Object oriented architecture, as the most appealing concept for grid appli-
cation programmers.

(4) Quantifiable system validation and verification, through formal methods
as a proof of concept for the system model.

2 Abstract Model

Some of the previous attempts in designing distributed shared memory systems for
the grid used logical mappings over one single large machine group. We believe that
another split is necessary. We see this mapping as part of the system deployment,
rather than a predefined mapping. In order to address thousands of nodes, we decom-
pose the system into a federation of groups of abstract machines called universes. A
universe is a logical collection of machine nodes which provides a hosting environ-
ment for distributed objects. Nodes are homogeneous and have a data storage capacity
in memory and code execution capabilities. Each node can hold a certain number of
objects so that the sum of all object weights held by the node shall not exceed the
node’s capacity. All existing universes form together the Grid Universe. Each uni-
verse is a continuously evolving entity together with its connections to the other uni-
verses. A universe groups together more physical machines which share the same
communication paths, thus communication channels within universes are homogene-
ous and have known and constant characteristics. Communication between universes
is unpredictable, unknown and dynamic.

We propose an object oriented model which provides interfaces for data encapsula-
tion and a natural and convenient way to abstract data sharing objects. It supports the
idea of objects residing in architectural different run-time systems like nodes in uni-
verses. The grid universe acts as a container for grid objects and provides means to
create delete and locate grid objects based on a unique object identifier. The users do
not operate directly on objects, but rather on object references. A grid object reference
is a handle to a concrete grid object that provides the same interface as the object
provides. A Grid Object has two identifiers associated with: the GID, which is associ-
ated by the system, and the OID which is given by the creator as a human friendly

 Designing an Architecture for Distributed Shared Data on the Grid 263

identifier. The OID is used to lookup a certain grid object. In order to decrease access
time to grid objects from different universes, we make use of data replication con-
cepts. If some configurable system conditions are satisfied, a grid object is replicated
to other universe nodes, assuming that object state can be transferred from one proc-
ess to another across a communication path.

3 System Architecture Selection

The main issue that our architecture needs to address is the problem of realizing mu-
tual exclusion. We have chosen entry consistency as replica consistency specification
for our system and we evaluated several possible solutions to realize the abstract
model. In the following table, we summarize the characteristics of each of the four
remaining candidates, where we highlight the negative characteristics of each solution
by marking them in italic style.

Table 1. Solution Selection Criteria

Criteria Centralized/N-T Martin/N-T Suzuki-
Kasami/N-T

Grid N-T

Universe Scalability High High High High
Local scalability Low/Medium Low Medium High
Local obtaining time Low/Medium Medium/High Medium Low
Local resource demand Low Medium High Low/Medium
Independent
processing

High Low Low Low

Complexity Low Medium Medium High
Local dynamics High Low/Medium Low/Medium Low

The first solution is our main contribution and refers to a centralized algorithm in-

side each universe and a multi-token algorithm between universes derived from the
Naimi-Trehel [6] algorithm that was adapted to satisfy entry consistency. The core
motivation for this choice is its high local dynamics, higher capability to perform
independently, a low resource demand and low complexity. We have traded the local
scalability for all other characteristics as we believe that universes will have a limited
number of nodes for typical deployment scenarios. The next two considered solutions
are the compositional approaches described [7]. These are similar to the previous
solution, the only difference is the mutual exclusion algorithm applied inside a uni-
verse. The last choice is the adapted Naimi-Trehel algorithm described in [8] which is
applied on the grid scope. This solution requires a gateway node in each cluster in
order to keep track if the token is held remotely or not. From this point of view, this
design approach resembles our proposal. Based on the measurements of [8], it appears
that the Naimi-Trehel algorithm is the most suitable algorithm between universes and
it provides a reasonable trade-off between different classes or applications (highly
parallel vs. low parallel applications) which supports the idea of our architecture
proposal.

264 D. Tudor, V. Cretu, and W. Schreiner

4 Conclusions

In this paper we have highlighted the problem of shared data programming on the grid
and have pointed out that there is little research in this direction. We have introduced
an abstract programming model that transparently defines the grid shared data items
as grid shared objects. In addition to the relaxed entry consistency semantics, we
consider different object types in order to exploit different synchronization schemes
and reduce communications costs. We have proposed a mutual exclusion algorithm
based on the Naimi-Trehel algorithm that is easy to adapt and extend in order to ac-
commodate different interaction patterns.

A model of the presented system is currently being developed in order to be simu-
lated and verified using a probabilistic model checker that would provide quantifiable
results on the behavior of our system in various conditions. At the same time, a pro-
totype implementation is being developed in order to confirm the findings through
model verification and simulation.

References

1. Cheung, B.W.L., Wang, C.-L., Lau, F.C.M.: LOTS: a software DSM supporting large ob-
ject space. In: IEEE International Conference on Cluster Computing, pp. 225-234 (2004)
ISBN: 0-7803-8694-9

2. Ryan, J.P., Coghlan, B.A.: SMG: Shared memory for Grids. In: Proceedings of 6th IASTED
International Conference on Parallel and Distributed Computing and Systems, pp. 439–451
(2004), http://www.cs.tcd.ie/coghlan/pubs/pdcs04-06072004-v1.pdf

3. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan
Kaufmann, San Francisco (1999)

4. Osrael, J., Froihofer, L., Goeschka, K.M.: A Replication Model for Trading Data Integrity
against Availabilit. In: The 12th Int. Symp. on Pacific Rim Dependable Computing (PRDC
2006). IEEE CS Press (2006)

5. Antoniu, G., Bougé, L., Jan, M.: JuxMem: An Adaptive Supportive Platform for Data Shar-
ing on the Grid. Scalable Computing: Practice and Experience 6, 45–55 (2005)

6. Naimi, M., Trehel, M., Arnold, A.: A log (N) distributed mutual exclusion algorithm based
on path reversal. JPDC 34(1), 1–13 (1996)

7. Sopena, J., Legond-Aubry, F., Arantes, L., Sens, P.: A Composition Approach to Mutual
Exclusion Algorithms for Grid Applications. In: Proceedings of the 2007 International Con-
ference on Parallel Processing (ICPP 2007), vol. 00, p. 65 (2007) ISBN 0-7695-2933-X

8. Bertier, M., Arantes, L., Sens, P.: Hierarchical token based mutual exclusion algorithms. In:
IEEE International Symposium on Cluster Computing and the Grid, 2004. CCGrid 2004,
April 19-22, pp. 539–546 (2004) ISBN: 0-7803-8430-x

Grinda: A Tuple Space Service for the Globus

Toolkit

Sirio Capizzi and Antonio Messina

University of Bologna
Department of Computer Science

Mura Anteo Zamboni 7, 40126 Bologna Italy
{capizzi,messina}@cs.unibo.it

Abstract. In this article we present a service for the Globus Toolkit
that implements the tuple space model, allowing applications to use it
to coordinate their activities.

1 Introduction

There are several ways to coordinate tasks in a GRID middleware as, for instance,
publish/subscribe systems or workflow engines. Another possible approach to
coordinate tasks is the use of tuple spaces [1]. This model has been introduced
several years ago and has been successfully used for the coordination of numerical
applications. In this article we will describe our experience in developing a tuple
space service named Grinda for the Globus Toolkit 4 [2]. This service is designed
as coordination framework for applications and services. For example, it can be
used by an index service to implement distributed indexes. Applications and
services developed with Grinda can exploit interesting features like independence
from network topology and the possibility to choose between different tuple space
implementations, adapting the framework to the application requirements.

2 The Tuple Space Model

The Tuple Space model proposed by Carriero and Gelernter as coordination
model for distributed application [1] is based on the concept of a virtual shared
memory, the tuple space, on which the various hosts can operate using a limited
number of powerful operations.

In the past years several tuple space implementation has been proposed. The
most important are TCP Linda [3], the last incarnation of the original model,
TSpace [4], JavaSpaces [5], GigaSpaces [6], Lime [7], Tucson [8] and many others.

The tuple space model we have employed in our system is inspired by JavaS-
paces. It uses full fledge objects as tuples instead of the usual array structure.
We have decided to use the JavaSpaces approach for two reasons: it simplifies the
developing of applications promoting the reuse of existing objects, and it maps
better into XML messages requiring less effort for the serialization. Moreover,
our model supports subtype matching too.

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 265–268, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

266 S. Capizzi and A. Messina

3 Service Implementation

The architecture of the Grinda service is composed by two main modules: a
client-side module and a server-side one.

The main purpose of the client-side module is to hide the details of the com-
munication with the server, in order to simplify the development of applications
based on Grinda. It has been designed to be loosely-coupled with the service al-
lowing the use of other libraries or programming languages. We have developed
two different client-side modules: one in Java and the other in C++.

The server-side module contains the logic responsible for storing the tuples
and for implementing the tuple space operations. It has been designed to be
a Web Service deployable in the Globus Toolkit’s container. Its architecture is
based on the Factory Design Pattern used to create and manage configurations
and tuple space objects.

Tuple spaces have been designed to be modular and share the same interface
allowing different implementations to be developed. Until now, we have imple-
mented two different types of tuple space: a transient and a persistent one. The
first type uses spatial indexes to speed-up space operations whereas persistent
tuple spaces have been implemented using an XML databases.

Tuple Serialization. The major difficulty in implementing Grinda service was
the handling of different data types in tuples. Usually, web services developers
have to deal with predefined data structures. In our case this approach cannot
be followed because the service is unable to know in advance the data types
employed. Therefore, we have simplified the serialization management, allowing
developers to use their objects directly.

To convert data into XML we have used the XStream library [9]. Employing
the Java reflection, this library automatically serializes objects in a XML rep-
resentation following their own internal structure, without the need of specific
serializers. If some data type still need a specific serializer, external plugins can
be used.

Nevertheless, there are cases in which this translation to plain XML fails. For
example, special encoding of binary data types or matching through the use of
supertypes cannot be effectively achieved in this way. Threfore, special XML
attributes have been added in these cases.

C++ Client. The automatic type serialization in the C++ client has been quite
challenging. Actually, C++ does not implement a standard reflection API and
RTTI is not powerful enough to support the automatic serialization of custom
types. For this reason we have used the Qt4 Toolkit that provides the Meta
Object System. It is a reflection API less evolved than the Java counterpart but
still very useful for our purpose.

Since the Qt framework does not support SOAP or XML-RPC messaging, we
have used the gSOAP 2.7.9 library, a little and embeddable library that allows
to develop web services in both C and C++.

Grinda: A Tuple Space Service for the Globus Toolkit 267

4 Test Results

We have performed some preliminary tests to verify the behavior of Grinda. In par-
ticular two different aspects have been measured: the latency of the system and its
scalability.For the latter testtwodifferenttypesofapplicationshavebeenemployed.

The first type of application consists in using a brute force attack to guess
an hashed password. This is an embarassingly parallel application that requires
almost no communications during its execution. Thus the communication over-
head is very limited.

The second test application is a plasma simulation performed porting in
Grinda the MPI-based ALaDyn code [10] that implements a so called Particle In
Cell (PIC) based simulation. The algorithm used is known to be not completely
parallel and requires much more communications than the first application.

All our tests have been conducted on the same testbed: a 100Mbps Ethernet
LAN composed by up to 64 Core Duo PCs equipped with Ubuntu Linux 7.04.
This network was not dedicated because it is a student laboratory, but was the
only choice we had to collect a medium-large number of hosts.

Latency Tests. The first test has measured the latency of the service and its
dependency on the host number. Given a number of clients, the tests consist
in calculating the average time spent for taking/writing the same tuple from/in
a space. The average has been obtained from 1000 repeated tests. Figure 1a
shows that the average time required by take operations seems to be absolutely
independent of the network size, whereas write operations increase by a small
factor,∼20%, when the size grows. Probably this is caused by an higher overhead
in instantiating all the objects required for storing tuples.

Scalability Test. As described before, the scalability has been studied on two
different types of applications. In both cases, we have measured the average time
required for computation as host number increase.

The purpose of the first application was to analyze the behavior of our service
in a completely parallel application with a minimum communication overhead.
Figure 1b reports performance time averaged over 100 run with respect to node

0

20

40

60

80

100

120

140

4 8 16 32 64

process

T
im

e
(m

s)

Avg. Write Time
Avg. Take Time

(a)

1000

10000

100000

1000000

4 8 16 32 64

#hosts

T
im

e
(m

s)

Experimental
Theorical

(b)

100

1000

10000

4 8 16 28

#hosts

T
im

e
(s

ec
)

Experimental
Theoretical

(c)

Fig. 1a. Latency test results. Fig. 1b. Results of the scalability test using the highly

parallel application. Fig. 1c. Results of the scalability test for plasma simulation code.

268 S. Capizzi and A. Messina

number: it is clear that this application scale very well according to the theoret-
ical limit, � N−1.

Figure 1c shows performance of plasma algorithm. Of course, the performance
is worst with respect to the previous one. However this fixes the range of perfor-
mance of the Grinda service.

5 Conclusion

In this article we have described our experiences in developing a tuple space
service for the Globus Toolkit. This service can be used to implement distributed
applications in a simple way, exploit interesting feature like automatic load-
balancing. It provides automatic serialization of data types and its architecture
is modular enough to support legacy applications too.

According to the test results we have collected, it seems that our service can
provide good performance to both completely and non-completely parallelizable
applications. However, these tests are only preliminary and a more deeper use
and development of this service is needed in order to produce an industrial-
strength product.

References

1. Gelernter, D., Carriero, N.: Coordination Languages and Their Significance. Com-
munication of the ACM 35(2), 96 (1992)

2. Globus Alliance: Globus Toolkit 4 (2006), http://www.globus.org
3. SCA: TCP Linda (2006), http://www.lindaspaces.com
4. IBM Corporation: TSpace Specification (1999)
5. Sun Microsystem: JavaSpaces Specifications (2005)
6. Shalom, N.: Space-Based Architecture and The End of Tier-based Computing

(2006)
7. Picco, G.P., Murphy, A.L., Roman, G.C.: LIME: Linda Meets Mobility. In: Inter-

national Conference on Software Engineering, pp. 368–377 (1999)
8. Omicini, A., Zambonelli, F.: Tuple centres for the coordination of Internet agents.

In: SAC 1999: Proceedings of the 1999 ACM symposium on Applied computing,
pp. 183–190. ACM Press, New York (1999)

9. XStream Project: XStream Library (2007), http://xstream.codehaus.org
10. Benedetti, C., Londrillo, P., Sgattoni, A., Turchetti, G.: ALaDyn: a high accuracy

PIC code for the Maxwell-Vlasov equations. In: Laser and Plasma Accelerators
Workshop, Azores, Portugal (2007)

http://www.globus.org
http://www.lindaspaces.com
http://xstream.codehaus.org

SuMo: A Framework for Prototyping

Distributed and Mobile Software

Hervé Paulino

CITI / Departamento de Informática, FCT Universidade Nova de Lisboa, Portugal
herve@di.fct.unl.pt

Abstract. The current trend in the organization of computational sys-
tems is propitious to the definition of run-time infrastructures that em-
bed distribution and mobility. Most of these grow from existent virtual
machines that execute sequential or concurrent code. In this paper we
present SuMo, a platform that factorizes all communication and mobility
dependent operations into a reusable layer. Our purpose is to provide a
framework to intuitively and easily extend existing virtual machines to
execute mobile distributed computations.

1 Introduction and Motivation

The last few years has seen the proliferation of many programming languages
featuring distribution and mobility. The gradual evolution of the computational
systems to distributed environments, where mobility plays an crucial role, and
the appearance of distributed process calculi, such as the Dπ-calculus [1], as a
tool to model distributed computations, were two defining factors.

In many cases, these programming languages are simple extensions to al-
ready existing sequential or concurrent ones, incorporating constructs to move
processes across the network, and to allow for remote communication and/or
synchronization. Examples of such extensions are: DiTyCO (Distributed TyCO)
[2], Mobile Ambients [3], Jocaml [4] and M-calculus [5] (based on Distributed
Join [6]). The run-time support for these new distributed systems usually grows
from existing infrastructures that execute local computations. Thus, all the effort
goes into providing support for distribution and mobility.

In this paper we present SuMo (Support for Mobile distributed software), a
platform that factorizes these distribution and mobility dependent operations in
a reusable layer. We reason on which operations are required by our target sys-
tems, and to which degree these can be factorized. We then define the interfaces
necessary for functionality standardization and abstraction, and provide full or
partial implementations of the factorized operations, namely resource publishing
and discovery, communication protocols, failure recovery, and so on.

The ultimate objective is to provide an intuitive framework for the easy and
fast prototyping of these languages by embedding distribution in the original
virtual machines. This allows to invest more in the implementation details that
are real contributions to the community.

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 269–281, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

270 H. Paulino

In summary, we feel that the main contributions of this work to the area of
middleware for distributed and mobile software are the following: (1) the factor-
ization of the distribution and mobility dependent operations in a middleware
that lives between the existent virtual machine and the outside world; (2) the
design approach specially focused at existing virtual machines, trying to reduce
the modifications to the indispensable (note that run-times may also be built
from scratch); (3) modularity, the platform allows for many different types of
architectures, message passing or shared memory driven; (4) full mobility sup-
port, weak and strong, providing the means for reliable communication, and;
(5) extensibility, the platform is not self-contained, new functionalities, such as
communication protocols or new events can be added.

Some work as already been done in this area [7], which features our collabo-
ration. We, however think that this new approach is more powerful and simpler
to use. A detailed comparison of our approach to the existing one will be given
in section 4. The remainder of the paper is structured as follows: the next sec-
tion reasons on which are the operations that can and must be factorized and,
how this is done in the scope of the SuMo framework; section 3 presents a case
study where we incorporate distribution and mobility into an existant virtual
machine; section 4 compares our work with other proposals in the field, and;
finally section 5 presents some conclusions and future guiding lines.

2 The SuMo Framework

In this section we reason about which are the distribution and mobility depen-
dent operations that can and must be factorized and, how this is done in the
scope of the SuMo framework.

Fig. 1. The layered architecture of the SuMo framework

Our architectural approach is layered and service-based (Figure 1). The oper-
ations are encapsulated into services that, in turn, are structured in three layers:
the network layer provides network-wide services, such as resource discovery; the
node layer, composed of abstractions for regular network nodes (nodes) provides
networking operations, such as remote communication, and; the site layer de-
fines the computational units (sites) and how these interact with the remainder
of the network, such as resource access.

SuMo: A Framework for Prototyping Distributed and Mobile Software 271

2.1 The Network Layer

Interaction in distributed systems naturally depends on the awareness that a site
has of the resources published by its counterparts, i.e., a Web browser must know
where a target server is listening for requests. This information can be statically
known, or discovered on-the-fly, where resource publishing and discovery plays
a crucial role and requires some kind of directory service.

Resources published in such service must be uniquely identified in the network.
A classic approach is the qualification with the hosting site’s identifier. This
requires some kind of site naming mechanism that can be simply the location
of the node running the site, which imposes a one site per node restriction, or a
symbolic identifier that has to be translated into the proper location.

One last concern is site mobility that introduces a problem in the management
of the network’s state coherency. Sites that have bindings to resources held by
the site about to move will hold invalid references.

In the remainder of this subsection we will explain how SuMo copes with
resource publishing/discovery, site identifiers, locations and site mobility.
Resource Publishing and Discovery. In SuMo the resource discovery and nam-
ing services are closely coupled, and from now on will be simply referred to as
the resource directory. The framework fully implements this directory, providing
the IResourceDirectory interface that allows sites to register and unregister their
location, discover the location of their peers, publish a set of resources, bind to
a set of resources, define new namespaces, and, in the presence of mobility, to
inform the network that a migration is taking place and, later, to update their
location,

Resources are represented in the framework by the Resource abstract class and
identified by implementations of the IResourceIdentifier interface that, in turn,
resort to site identifiers, implementations of the ISiteIdentifier interface.

Concrete instances of Resource must define resource compatibility, i.e., the
mechanism that guarantees the absence of protocol errors when accessing the
requested resource. This typically resorts to type information manipulation that
is implementation dependent and thus not provided by the framework.
Site Identifiers. Implementations of IResourceIdentifier and ISiteIdentifier must
define identifier equality. The framework provides a concrete implementations
of these interfaces that cope with the most common use of identifiers, resorting
to strings and denoting hierarchical networks. Flat networks can be seen as
hierarchical network with a single namespace.

Hierarchical namespaces define overlay networks on top of the existant net-
work topology. Figure 2 relates to a classic video streaming system where the
available videos are categorized according to their style. In order to a site to re-
ceive the streaming of one given video it must register itself in the correspondent
namespace. The leftmost figure illustrates the distribution of the sites along the
network nodes. The trees of the right represent the three overlay networks, one
for each available movie style.

In SuMo the media used to store the namespace’s registry, e.g., hashtables (regu-
lar or distributed) or databases, is also defined by an interface (INameSpaceMedia).

272 H. Paulino

Fig. 2. Overlay network application example

Currently, only an implementation that resorts to an internal hashtable
(HTNameSpaceMedia) is supplied.

The resource directory may be centralized, where all namespaces live in the
same node, or distributed along the network. The later case requires communi-
cation between a namespace and its parent or sons. In SuMo all these details
are encapsulated in class ResourceDirectoryProxy that, by also implementing the
IResourceDirectory interface, provides all the operations available in the directory.

Locations. The current location of site is given by the Location abstract class.
The choice of a class, in opposition to an interface, is due to the fact that loca-
tions must extend the Value base class for exchangeable values in the network
(more on this later). Location must be concretely extended to provide any kind
of localization protocols. This includes how the location listens to incoming con-
nections, and how it provides the means for other sites to require a connection.
Currently, SuMo provides a single concrete instance of Location: IPLocation, that
resorts to the (node network name/IP address, port number) tuple used to iden-
tify ports in IP based communication protocols, such as TCP/IP.

Handling Site Mobility. We solve this problem by having a protocol that en-
sures reliable communication in the presence of logic mobility [8]. This results
in a lazy reconfiguration of the network’s topology. The attempt to establish a
connection to a site that is no longer where expected throws an exception that
triggers a connection to the resource directory. Once the new location is obtained
communication may proceed.

This solution requires the locking of the moving site’s information in the
resource directory during the migration process. Thus, before migrating, a site
informs the directory service of its intention, which causes the suspension every
query related to the site until the new location is made public.

2.2 The Node Layer

A site executes in the boundaries of a node that provides for its execution en-
vironment, namely, dedicated and isolated flows of execution that ensure the

SuMo: A Framework for Prototyping Distributed and Mobile Software 273

privacy of a site’s resources1. It is also desirable to abstract the site from all
networking related details by providing, at the node level, a set of services that
establish the interface between the site and the remainder of the network. For
instance, sites running in the same node may communicate through shared-
memory or TCP based sockets. With this approach the management of these
details is entirely left to node, becoming completely transparent to the site.

In this perspective, the set of services provided by a node must include all
the network operations a site requires, namely interaction with the resource
directory, inter-site communication, site mobility and failure recovery. SuMo
defines the interfaces and fully implements each of these services, requiring only
the definition of the node’s communication technology (or technologies if more
than one is used).

Interaction with the Resource Directory. For this purpose the node must only
feature a resource directory proxy of the kind described in the previous subsec-
tion. Only the root of the resource directory is known to the node and, thus, it
is to that location that it will connect by default. However, as described in [8],
sites may cache information about the location of the namespace of their peers.
This information is passed to the node that uses it to reduce intermediaries.

Inter-site Communication. The node is responsible for managing site incoming
and outgoing communication. A site may ask the node to send a single message
or require a session. In the later case, the responsibility of managing the session
is left entirely to the site. Messages are, thus, exchanged between nodes. This
approach avoids having multiple threads, one per site, listening for incoming
messages at a node. The downside is the fact that it may pose as a bottleneck
for incoming traffic. Note, however, that the node only receives the message,
delegating the responsibility of its handling to the to the target site. This means
that, as soon as a message is delivered to a site, a new one can be received.

SuMo does not restrict the communication paradigm or protocol, it simply de-
fines the interface that must be respected (IConnector). Currently, the framework
only supplies one implementation, TCPConnector, that bases the communication
on TCP sockets, bound to instances of IPLocation.

Site Mobility. In order to move to a new node, a site must be able to pause/re-
sume its execution and to serialize/de-serialize its state. This forces every object
that composes the state to be transferred to implement some serialization in-
terface. The framework performs this task for every featured class and forces
the user to do the same, by the means of either the java.io.Externalizable or the
java.io.Serializable interfaces.

Once the serialization process is completed, the hosting node is called to
perform the migration operation. The arrival on the new node automatically
triggers the reconstruction of the site’s state, binding it to the locally available
instances of the node services, and the resuming its execution. A store-and-
forward protocol is used, meaning that the serialized state is persistently stored

1 The node launches a new flow of execution for each site it hosts. In turn sites may
create their own flows of execution.

274 H. Paulino

until the site’s next migration. In other words, if a site originally running in node
A migrates to B, and later to C, the state stored in A is only erased when the
site is successfully restored in C. This ensures that at least two nodes have a
copy of the site’s state, providing an important tool for failure recovery.

Failure Recovery. The node provides a full implementation of a service (with
interface IPersistanceService) for the persistent storing of a site’s state, allowing
for the recovery of previously stored states to, for instance, cope with hardware
failures, or simply to rollback the execution.

The fact that the state of a migrated site is persistently stored in a node, until
a new migration occurs, allows for the recovery of site even if, for any reason, the
new node permanently crashes. It is only natural for this recovered state to be
out-of-date, but it allows for the site to move to a new node and continue its exe-
cution. Picking in the previous example, if node C permanently crashes, the state
in B can be recovered and the site can restart its execution in a new node D.

2.3 The Site Layer

A site is where actual computation takes place. It is an extension of an original
virtual machine (VM) to handle distribution and resource mobility. Thus, a site
running at some node must be able to perform computation and use the services
provided by the node to interact with the remainder of the network.

In its original purpose, a VM would execute as a stand-alone computing el-
ement, and thus, with a self-contained execution environment. This contrasts
with the deployment in distributed settings, where a computing element may af-
fect and be affected by the remainder. A site must have the ability to trigger an
action in one of its peers, such as remote method invocation, or simply request
resources, such as code. We distinguish between the two because actions require
some kind of computation (from a VM) while requests simply consult and collect
data. In conclusion, sites must be composed of computing elements (VMs) and,
at least one entity that uses the hosting node to manage remote interaction. We
name this entity the communicator.

We now take a closer look on how the communicator must handle incoming ac-
tions and incoming/outgoing code (figure 3). The first requires the intervention

Site

Vir tual
Machine

Commu
nicator

Code Map

RunQueue

Code Request

Action

Fig. 3. Code requests and actions coming from the network

SuMo: A Framework for Prototyping Distributed and Mobile Software 275

of the VM in order to execute the action and trigger the response. The sec-
ond requires the access to the VM’s code area, in order to retrieve or place
the given code fragments. However, a VM is usually self-contained with all its
data-structures protected from the outside world. Some kind of resource sharing
mechanism that allows the communicator to access some of the VM’s resources
is required. Moreover, this implies the uniformity of the interfaces of these shared
resources, since different implementations have distinct approaches.

In conclusion, this layer needs to address how a site is internally constructed
by resorting to VMs and communicators, how resources can be shared among
these, how the communicator handles incoming events, and last, but not least,
how to implement some kind of marshalling procedure, possibly required to
ensure the uniformity of the representation across sites.

Site Architecture. The internal architecture of a site is thus composed of at
least one VM, that must extend the VirtualMachine abstract class, and of one
communicator, concrete instance of the Communicator abstract class that is re-
sponsible for the interaction with the node, acessing the resources of the VM
and marshalling. In figure 4 we present three distinct possible architectures for
a site. The first is, perhaps, the more classic approach composed of a single VM
and a single communicator. The second example illustrates a case where several
VMs use a single communicator as the intermediate to manage their communi-
cation, local and remote. Finally, the third example is inspired in the Mikado
membrane model [9] where one VM works as a membrane of the second, hiding
its implementation details and filtering communication.

Site

Vir tua l Machine

Communicator

Si te

Vir tual
Machine

Communicator

Vir tual
Machine

Vir tual
Machine

Si te

Communicator

Vir tua l Machine

Vir tua l Machine

Fig. 4. Some possible architectures for a site

Accessing VM Resources. In most site architectures, resources, namely the code
area and the queue of ready-to-execute tasks, of a VM must be accessed by other
VMs or communicators. However, a VM is usually self-contained with all its data-
structures protected from the outside world. To overcome this obstacle we define
the IResourceSharer interface that must be implemented by every entity that
wishes to have these access privileges. The VirtualMachine constructor receives
the array of all the objects that want to access its resources. The granting is
done by the VM, which allows to control who receives the accessing privileges.

The access to these shared resources must be uniform, which obliges the def-
inition of interfaces, respectively ICodeMap and IRunQueue. Moreover, the type

276 H. Paulino

of elements placed in both structures must also be defined2. ICodeMap features
methods to place and retrieve instances of CodeFragment, and IRunQueue must
be a queue of instances of Frame.

Site Interaction. In SuMo inter-site communication is event driven. The mes-
sages exchanged are instances of the Event class that carries the event’s data.
Event discrimination in actions and requests is denoted by the ActionEvent and
RequestEvent specializations of the the base class. These can, of course, be further
specialized.

The handling of a code request transparently interacts with the code map to
return the requested fragment. The download of code closures is also available,
avoiding the posting of multiple requests. Only the code fragments that have
not already been sent to the node performing the request are collected. The
destination of every outgoing fragment is bookkept.

The framework does not impose any restrictions on the format of the code
to migrate. The code serializing and de-serializing operations must be imple-
mented by extending the CodeHandler abstract class that implements ICodeMap
and provides the functionalities described in the previous paragraph. We want,
however, to be able to migrate different kinds of data, such as a code fragment or
an object (code plus data). For this purpose we define the IMigratable interface
that defines the properties for migratable entities. Two concrete implementations
MigratableCode and MigratableObject are provided.

Regarding actions, their handling begins by retrieving the code sent with the
event (if any), passing it to the local code-handler that de-serializes and places
it in the VM’s code area. Next, the handling of the action itself is done by native
code libraries, that are dynamically loaded on demand. For example, in order to
allow for remote method invocation, a site must define a library that generates
a VM task to perform the local method invocation. The framework will place
this task in the VM run-queue.

Note that the code of the library is locally defined and its liaison to a given
event must be encoded in the concrete instance of the communicator.

Marshalling. Before being dispatched to the target node, the data of an event
(composed of instances of abstract class Value) may have to be marshalled, in
order to be translated into a format understandable to the receiver. The proce-
dure is not defined in the framework. Concrete instances of the communicator
must supply it, by implementing the IMarshaller interface.

3 Case Studies

In this section, we present how the SuMo framework was used to implement the
run-time system for the DiTyCO programming language [2,10], by extending the
TyCO (Typed Distributed Objects) run-time [11] with support for distribution

2 Note that internally the original representation may be kept. This however requires
a transformation step between both representations.

SuMo: A Framework for Prototyping Distributed and Mobile Software 277

and mobility of resources. Moreover, we present how the DiTyCO run-time was
later used as the backbone for the one of the Mob programming language [12].

3.1 A Run-Time for the DiTyCO Language

DiTyCO is based on the TyCO calculus, which is a form of asynchronous π-
calculus [13, 14], featuring objects, and process definitions as fundamental ab-
stractions. Objects are sets of methods that are placed in channels. A method is
selected by sending an asynchronous message targeted at the channel that holds
the object. Thus, these messages are in fact method invocations. Process defini-
tions allow for the abstraction of a process on a set of parameters, and enable
recursion. Distribution was introduced in [2], by extended the language with
lexical scoping for identifiers, located computations or sites, and code mobility
(driven by lexical scope).

The Network Layer. DiTyCO networks are flat and the resources that a DiTyCO
site exports are channels. Thus, there is one namespace for the whole network,
and its location is usually referred to as the name-server (just as illustrated
in figure 5). The nameserver solves the whereabouts of all the sites running in
the network, and of the channels they export. Channels are represented by a
concrete instance of Resource that defines channel equality by using the TyCO
type unification algorithm. If the unification succeeds, the type of the channel in
the name-server is replaced with the type resulting from the unification. Thus,
the type locally inferred by the site that imports the channel can influence the
type for the channel in the network.

The Node Layer. DiTyCO does not support site migration, thus nodes solely
provide for interaction with the name-server and inter-site communication. All
communication is done by resorting to the TCP protocol based connections
provided by the TCPConnector class.

Node A

Node B

Node C

Communicator

Heap

Shared Run-Queue Code

Threads

Marshalling TableShared
Run-Queue

Code

TyCO VM

Registers PC

Run-Queue

Registers PC

Run-Queue

Communicator
Network

Communicat ion

Node D

Name-server

Fig. 5. The architecture of a DiTyCO site and network

278 H. Paulino

The Site Layer. The run-time for DiTyCO is naturally built from the one for
TyCO. Thus, the architecture of the site is simply complemented with the com-
municator (figure 5). The original virtual machine was altered to extend the
VirtualMachine class, in order for the communicator to access to the VM’s code
area and run-queue. The code area and run-queue were slightly altered to be
compliant with the ICodeMap and IRunQueue interfaces, respectively. The major
alteration relates to the fact that fragments were originally mapped by their
memory reference and, in context where code may migrate from site to site, the
SuMo framework opts to map them by name.

To implement a concrete instance of the communicator we had to provide
the event handling and marshalling procedures. Also required was the choice of
the communication technology used in all network interaction, which fell on the
already available TCP based.

Inter-site communication in DiTyCO regards the sending of messages (method
invocations) or objects to remote channels, and remote instantiation of defini-
tions. Sending a message or an object to a remote channel is an event that
triggers an action at the target site. Two new action events where defined: (1)
MessageEvent holds the arguments of a method invocation and its reception is
handled by the tryReduceMessage library, and (2) ObjectEvent holds the object’s
free variables and its reception is also handled by a dedicated library, tryRe-
duceObject, that places the object in the target local channel.

The remote instantiation of definitions uses a code downloading strategy, us-
ing the functionalities provided by the Communicator class. This includes the
handling of CodeRequestEvent, and the methods featured in the CodeHandler
class to handle incoming/outgoing code.

Regarding the marshalling procedure, in DiTyCO communication is driven
by lexical-scope, meaning that every message or object targeted at a channel
is sent to the site hosting that channel. This is implemented by keeping track
of the channels exported to the network in a map, the marshalling table, that
associates a the local channel to unique network-wide identifier (figure 5).

3.2 A Run-Time for the Mob Language

Mob is a high-level service-oriented mobile agent programming language [12]. It
is compiled into DiTyCO, and thus it resorts the DiTyCO run-time. In reality
it extends the DiTyCO run-time to include site migration across nodes, and to
feature a number of other functionalities, such as the interaction with external
programs, that are not in the scope of this paper. We will discuss how the
DiTyCO run-time was extended to feature site mobility.

The Network Layer. Nothing was altered, the only difference is that Mob makes
use of the migration handling capabilities of the resource directory.

The Node Layer. The node layer is also completely inherited from the DiTyCO
run-time, making now use of the mobility service. The only requirement was to
define how a DiTyCO site running a Mob computation is serialized and recon-
structed. It this particular case, there are several functionalities required by the

SuMo: A Framework for Prototyping Distributed and Mobile Software 279

site that are common to every node, and thus, there is no need of migrating
them. The state to migrate was defined accordingly, and the rebinding to the
resources available locally is performed on arrival.

The Site Layer. Extends the inherited site layer with some new operations such
as: (1) remote site creation: that creates a new site at a remote node, using the
framework’s remote launching facility; (2) remote channel creation: that creates
a new DiTyCO channel at a given remote site by defining a new event handled
by the NewChannelAt library, and, of course: (3) migration: that uses the lower
layers to allow for DiTyCO site migration.

4 Related Work

Our work borrows some of the ideas discussed during the development of the
Mikado-IMC [7] framework, on which we collaborated. However, while the IMC
framework is more oriented in the development from scratch, our approach fo-
cuses more on the ability to extend existing virtual machines. This does not
mean that both cannot be used to play both roles. It just leads to different
conception ideas, that distinguish the frameworks. Moreover, SuMo structures
the run-time environment in three layers, which allows for VM migration, i.e.,
strong mobility of computations, instead of only code and data.

The IMC framework is dedicated to incorporate mobility in virtual machines
that use Java as their execution code. Thus, all the code migrated from one node
to another is serialized Java byte-code, that is handled by a network class loader
that fetches code on-demand. SuMo is not that bound to Java. It only uses the
JVM as a middleware to support the run-time system. The native code of the
VMs is not restricted. In fact, one of the components that must be implemented
is the one that handles code serialization and de-serialization. This leads to a
more general approach.

Regarding communication, in the IMC every binding has its own dedicated
communication channel. In SuMo, all the connections directed at a node are
handled by a single entity, the hosting node. For example, in TCP/IP based
communication, a node has only one server socket.

The communication protocols are also easier to implement in SuMo. It is
the simple implementation of an interface that sends and receives messages. In
IMC, a protocol stack with session interfaces to forward messages between each
protocol must be defined. Although, more general it adds a complexity factor
that we do not think is necessary. Even the implementation of a simple protocol
is time consuming.

5 Conclusions and Future Work

The framework has been used to implement the DiTyCO and Mob run-times, and
is being used to implement other languages with distribution and mobility [15]. A
embryonary version is currently the base for the run-time of the TyCO platform

280 H. Paulino

[16]. The re-engineering of the platform with the new version has proved to be
intuitive and simple, and will be included in upcoming releases. Experiences in
the realm of virtual machine mobility have also been done in the scope of the
Mob run-time. Thus, this kind of mobility is not restricted by the framework, in
fact, we intend to supply general features for this support in the near future. The
restriction can come, however, from the site itself, since it must be able to restart
itself from a given state. This feature cannot be provided by the Mikado-IMC
framework because of its close-coupling to Java, which does not allow users to
access the run-time state.

Our future goals also include the development of higher-level APIs, in order
to reduce even further the amount of code required to embed distribution into
a virtual machine.

References

1. Riely, J., Hennessy, M.: Distributed Processes and Location Failures. In: Degano,
P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256,
pp. 471–481. Springer, Heidelberg (1997)

2. Vasconcelos, V., Lopes, L., Silva, F.: Distribution and Mobility with Lexical Scop-
ing in Process Calculi. In: Workshop on High Level Programming Languages
(HLCL 1998). Electronic Notes in Theoretical Computer Science, vol. 16(3), pp.
19–34. Elsevier Science (1998)

3. Cardelli, L., Gordon, A.: Mobile Ambients. In: Nivat, M. (ed.) FOSSACS 1998.
LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

4. Conchon, S., Fessant, F.L.: Jocaml: Mobile Agents for Objective-Caml. In:
ASA/MA 1999, pp. 22–29. IEEE Computer Society (1999)

5. Schmitt, A., Stefani, J.B.: The M-calculus: A Higher-Order Distributed Process
Calculus. In: Proceedings 30th Annual ACM Symposium on Principles of Pro-
gramming Languages (POPL) (2003)

6. Fournet, C., Gonthier, G., Lévy, J.J., Maranget, L., Rémy, D.: A Calculus of Mobile
Agents. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119,
pp. 406–421. Springer, Heidelberg (1996)

7. Bettini, L., et al.: A Software Framework for Rapid Prototyping of Run-Time
Systems for Mobile Calculi. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS,
vol. 3267, pp. 179–207. Springer, Heidelberg (2005)

8. Paulino, H.: Reliable Communication in the Presence of Agent Mobility. In: Pro-
ceedings of the 12th IEEE Symposium on Computers and Communications (ISCC
2007). IEEE Computer Society (2007) (to appear in July 2007)

9. Boudol, G.: A Generic Membrane Model. In: Second Global Computing Workshop
(2004)

10. Lopes, L., Silva, F., Figueira, A., Vasconcelos, V.: DiTyCO: An Experiment in Code
Mobility from the Realm of Process Calculi. In: The 5th Mobile Object Systems
Workshop (MOS 1999) (1999)

11. Paulino, H., Marques, P., Lopes, L., Vasconcelos, V., Silva, F.: A Multi-Threaded
Asynchronous Language. In: Malyshkin, V.E. (ed.) PaCT 2003. LNCS, vol. 2763,
pp. 316–323. Springer, Heidelberg (2003)

12. Paulino, H., Lopes, L.: A Mobile Agent Service-Oriented Scripting Language En-
coded on a Process Calculus. In: Lightfoot, D.E., Szyperski, C.A. (eds.) JMLC
2006. LNCS, vol. 4228, pp. 383–402. Springer, Heidelberg (2006)

SuMo: A Framework for Prototyping Distributed and Mobile Software 281

13. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes (parts I and
II). Information and Computation 100(1), 1–77 (1992)

14. Honda, K., Tokoro, M.: An Object Calculus for Asynchronous Communication. In:
America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 141–162. Springer, Heidelberg
(1991)

15. Martins, F., Salvador, L., Vasconcelos, V., Lopes, L.: MiKO: Mikado Koncurrent
Objects. Technical Report 05081, Dagstuhl Seminar (2005)

16. TyCO: Typed Concurrent Objects (2003), http://www.ncc.up.pt/tyco/

http://www.ncc.up.pt/tyco/

A Debugger for Parallel Haskell Dialects�

Alberto de la Encina, Ismael Rodŕıguez, and Fernando Rubio

Facultad Informática. Universidad Complutense de Madrid
C/. Prof. José Garćıa Santesmases, E-28040 Madrid. Spain

{albertoe,isrodrig,fernando}@sip.ucm.es

Abstract. Due to its high-level nature, parallel functional languages
provide some advantages for the programmer. Unfortunately, the func-
tional programming community has not paid much attention to some
important practical problems, like debugging parallel programs. In this
paper we introduce the first debugger that works with any parallel ex-
tension of the functional language Haskell, the de facto standard in the
(lazy evaluation) functional programming community. The debugger is
implemented as an independent library. Thus, it can be used with any
Haskell compiler. Moreover, the debugger can be used to analyze how
much speculative work has been done in any program.

1 Introduction

The functional paradigm provides some advantages for the programmer. In par-
ticular, parallel functional languages are endowed with useful abstraction mech-
anisms like function composition and higher-order functions. The higher-order
programming level provided by them allows to define the coordination of sub-
computations in terms of the same constructions used in the rest of the program,
which enables the definition and use of skeletons [1,2,5] to develop simpler par-
allel programs. Besides, since functional programs do not have state, side-effects
are eliminated. So, the dependencies between processes are limited to obtaining
the arguments needed to execute each function. These features ease the coordi-
nation issues and allow to define them in a natural way.

During the last years, several parallel functional languages have been pro-
posed (see e.g. [13,5,12,4]). In particular, many of them are parallel dialects of
the (lazy evaluation) functional language Haskell [10]. These extensions can be
classified by level of control of parallelism, ranging from a completely implicit
parallelism —for instance automatic parallelization— to an explicit parallelism
where the programmer distributes the computation among a set of communicat-
ing processes that even may be located by the programmer himself at designated
processors. The interested reader can find a detailed description of many Haskell
dialects in [14], while an analysis of efficiency can be found in [8].

� Research partially supported by the MCYT project TIN2006-15578-C02-01, the
Junta de Castilla-La Mancha project PAC06-0008-6995, and the Marie Curie project
MRTN-CT-2003-505121/TAROT.

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 282–293, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Debugger for Parallel Haskell Dialects 283

An important weak point of all parallel Haskell dialects is that they lack de-
bugging facilities. Thus, altough the efficiency results obtained are acceptable,
it is sometimes difficult for the programmer to detect simple bugs. In this pa-
per we will present the first debugger for a parallel Haskell dialect. In fact, our
debugger works with any dialect whose compiler provides a very common prim-
itive. Moreover, the debugger provides profiling information about the amount
of speculative work done by the programs, an it also produces graphics allowing
to analyze races between producer and consumer processes. In this paper we will
concentrate on these features of our debugger. In particular, we will pay special
attention to present the graphical outputs provided by our tool.

Let us remark that Haskell uses lazy evaluation. That is, it applies the laziness
for deciding the computations to be executed in each moment. That is, a compu-
tation is performed only after it is detected that the result of that computation
is required for continuing another computation that is already initiated. Let
us note that pure laziness implies sequential computation. So, in order to allow
parallel computations, parallel Haskell dialects introduce eagerness in different
aspects. For instance, semi-explicit languages like GpH allow the programmer
to use a seq operator to force the eager evaluation of parameters. Other more
explicit languages like Eden creates new processes eagerly. Moreover, any newly
created process is able to perform computations in parallel before its creator
actually demands the result for continuing its execution. This feature, which is
very useful for enabling parallelism, may cause that a program performs some
computations that turn out to be unneeded. In fact, Eden processes are specula-
tive: They perform computations under the assumption that they will actually
be needed.

The uncontrolled speculation may be a source of inefficiency in parallel pro-
grams. In order to achieve a better use of resources and a higher performance, the
programmer should be provided with a measure of the unnecessary speculation
of a program. In this paper we present a method for comparing the speculative
computations and the computations actually needed. Basically, the method con-
sists in comparing the data actually needed by a process and the speculative
data evaluated by processes launched by this process. Due to lack of space, we
will only consider how to analyze the speculation in one parallel Haskell dialect
(the Eden language), but dealing with other dialects is straightforward.

Unfortunately, making a functional program to show the results of partial
computations in some points is not easy. Let us remind that, contrarily to an
imperative program, a functional program does not have state. Thus, the obser-
vation of partial computations cannot be based on observing how some variables
change, because variables do not exist in functional environments. Besides, due
to the laziness of Haskell, the execution of a computation may turn out to be
unnecessary, but a simple observation (e.g., writing a result in the screen or in
a file) could create a false demand on such unneeded computation. Hence, ob-
servations must be defined in such a way that they produce a (neutral) result
that is actually required only in the same situations as if the observations were
not introduced. We will address this issue by using and extending Hood (Haskell

284 A. de la Encina, I. Rodŕıguez, and F. Rubio

Object Observation Debugger [3]). This tool allows a programmer to observe the
behavior of a Haskell program by inserting some calls to an observation function
in the program. The observation function records the value returned by a func-
tion in some point of the program, but without creating extra demand. These
functions will be the basis of our method to compare the useful speculation and
the actual speculation in programs developed with parallel Haskell dialects.

The rest of the paper is structured as follows. In the next section we present
the observation constructions of Hood and the basic ideas of its parallelization.
Next, in Section 3 we present our method to assess the unnecessary speculation
in a concrete parallel Haskell dialect. A case study is shown in Section 4. Finally,
Section 5 contains our conclusions.

2 Basic Hood

In this section we show the basic ideas behind Hood. The interested reader is
referred to [3] for more details about it.

As we have commented before, introducing observations in a lazy language
can modify the order of evaluation, affecting to the overall computation. Fortu-
nately, Hood allows the programmer to observe something similar to what can
be observed in imperative environments. In fact, Hood allows the programmer
to observe any intermediate structure appearing in a program. Moreover, we
can also observe the evolution in time of the evaluation of the structures under
observation. It is important to remark that Hood does not only observe simple
data types. In fact, it can observe anything appearing in a Haskell program. In
particular, we can observe functions. For instance,

observe "sum" sum (4:2:5:[])

will observe the application of function sum to its parameter, returning:

-- sum

{ \ (4:2:5:[]) -> 11 }

Note that what we observe can be read as when the function receives as input
the list 4:2:5:[], it returns as output the value 11. The elements 4, 2 and 5 appear
explicitly because they were really demanded to evaluate the output. However,
when observing something like

observe "length" length (4:2:5:[])

we will obtain the following observation:

-- length

{ \ (_:_:_:[]) -> 3 }

That is, we are observing a function that when it receives a list with three
elements it returns the number 3 without evaluating the concrete elements ap-
pearing in the list. Note that it is only relevant the number of elements, but not
the concrete elements.

As it can be expected, higher-order functions can also be observed, but we do
not show it due to lack of space.

A Debugger for Parallel Haskell Dialects 285

2.1 Basic Ideas of the Parallel Implementation

Both the original sequential Hood library and our parallel extension have been
implemented as libraries. Thus, our debugger can be used with any Haskell com-
piler and with any of its parallel dialects. Let us note that the main difficulties
to implement our framework are in fact two intrinsic features of Haskell: The
absence of state and the lazy order of evaluation. In order to deal with both fea-
tures in a sequential environment, a monadic approach is used to guarantee that
the order of evaluation is not modified. However, in the parallel case we need to
observe independently the information concerning each process in the program.
So, we need to take the control over where and when each tracing informa-
tion is written. This requires to redefine some of the functionalities provided by
Hood. In particular, we modify the tracing (sequential) monad to provide a new
parallel-oriented monad. This monad creates several threads that independently
deal with each part of the tracing information. The aim of this modification is to
send the information collected in each processor to a different file. Since several
processes can exist at the same time in the same processor, care must be taken to
avoid inconsistencies in these files. In order to provide an efficient implementation
of the observation mechanism, we enable the concurrent access to the report files
of each processor. This feature requires the definition of critical regions where the
simultaneous access to a file by several threads is restricted. By using a suitable
concurrent implementation of the observation procedure, the required informa-
tion is finally collected in the corresponding files. Then, our post-processing
functions compute and organize the tracing information contained in the files,
which concerns the speculative behavior of the program at each point. In par-
ticular, they match invoker and instantiated processes in pairs and compute the
difference between computed data and required data for each pair.

3 A Sample Haskell Dialect: The Eden Language

Eden [5,9] extends the lazy functional language Haskell [10] by adding syntactic
constructs to explicitly define and instantiate processes. It is possible to define a
new process abstraction p by using the following notation that relates the inputs
and the outputs of the process: p = process x -> e , where variable x will
be the input of the process, while the behavior of the process will be given
by expression e. Process abstractions can be compared to functions, the main
difference being that the former, when instantiated, are executed in parallel.

Process abstractions are not actual processes. To really create a process, a
process instantiation is required. This is achieved by using the predefined infix
operator #. Given a process abstraction and an input parameter, it creates a
new process and returns the output of the process. Each time an expression e1 #

e2 is evaluated, the instantiating process will be responsible for evaluating and
sending e2, while a new process is created to evaluate the application (e1 e2).

Once a process is running, only fully evaluated data objects are communicated.
The only exceptions are lists, which are transmitted in a stream-like fashion, i.e.
element by element. Each list element is first evaluated to full normal form

286 A. de la Encina, I. Rodŕıguez, and F. Rubio

and then transmitted. Concurrent threads trying to access not yet available
inputs are temporarily suspended. This is the only way in which Eden processes
synchronize. Notice that process creation is explicit, but process communication
(and synchronization) is completely implicit.

Eden’s compiler has been developed by extending the most efficient Haskell
compiler (GHC). Hence, it reuses GHC’s capabilities to interact with other pro-
gramming languages. Thus, Eden can be used as a coordination language, while
the sequential computation language can be, for instance, C. Performance results
show that Eden programs can obtain acceptable speedups (see e.g. [9,8]).

3.1 Testing Speculation with Hood

In this section we present our method to assess the speculation of a parallel Eden
program. The method is based on using the observation functionalities provided
by Hood in specific points of the program under assessment, and it can be easily
adapted to deal with other parallel Haskell dialects.

Let us recall that the application of observe to a term returns only the (par-
tial) evaluation of the term that is actually required by other subcomputations
in the context where observe is invoked. Hence, it gives us the (partial) term
that is demanded in the context of the observation. When a process instantiates
another process, the former process demands the computation of a term from the
latter (from now on, invoker and instantiated processes, respectively). In order
to perform our analysis, we need to consider the evaluation of this term at two
different points. On the one hand, the observation of the term required by the
invoker (in the context of the invoker) gives us the true necessities of the program
at this point. On the other hand, the observation of the term constructed by the
instantiated process (in the context of instantiated process) gives us the result of
the speculated work performed by the instantiated process. By comparing both
values, we can assess the amount of unnecessary speculation performed by the
program at this point. In fact, if we obtain not only the final values of the term
at both sides but also the order in which each part of the term is calculated,
then we can infer not only the amount of unnecessary work but also the relative
speeds of both parts. Hence, we can enrich the profiling capabilities of Eden.

3.2 General Scheme to Analyze Speculation in Eden

Let us remark that the speculative work can be done both by the invoker and
the instantiated processes. For instance, the invoker process can instantiate a
new process and afterwards can produce some values that this new process may
or may not need. The values demanded by the instantiated processes are its
parameters. In this case, the instantiated process takes the values computed by
the invoker as long as it needs them, and the speculative work is performed by
the invoker process.

Next, we present a general scheme to deal with any scenario where the specu-
lative work of some processes has to be assessed. The basic idea is to redefine the
basic constructions of the language to introduce observations. This redefinition
performs all the required tracing issues in such a way that the programmer can

A Debugger for Parallel Haskell Dialects 287

forget any details concerning observations: He must just instantiate the processes
he wants to analyze by calling the functions provided by the new constructors and
introducing his function as parameter. Then, the system automatically reports
any change on both its input and its output. By applying the new observation
constructors to both an invoker and an instantiated process, all the needed in-
formation will be properly reported. Thus, if we want to observe the inputs and
outputs of a process that computes a given function f then, instead of directly
using f, we will call the following function processObs using f as parameter:

processObs f = process ins -> (observe "outsFromProcess" outs)
where outs = f ins’

ins’ = observe "insToProcess" ins

The previous function defines a process with input ins. In order to observe the
data that this new process receives from its creator and it actually requires,
this parameter is observed by the second observation in the previous definition,
labelled by insToProcess. After function f is normally applied to the input, the
output outs is obtained. The observation of this term (first observation, labelled
by outsFromProcess) reports the data this process transmits to its creator.

The previous function allows us to observe the treatment of inputs and outputs
of the instantiated process. Similarly, we need a new functionality to observe
the behavior of the invoker process. Next we redefine the process instantiation
operator to include the observation capabilities. The new operator, based on the
standard operator #, is ##:

p ## actualParameters
= observe "insFromProcess"

(p # (observe "outsToProcess" actualParameters))

The new operator allows any process to instantiate a new process by using
the standard one. Besides, two observations are introduced to report the inputs
and outputs that the invoker process exchanges with the new process. Observa-
tions labelled by insFromProcess report the data that the invoker receives (and
actually requires) from the newly instantiated process. Observations labelled by
outsToProcess report the data that is sent from the invoker to the instantiated
process (regardless of whether the instantiated process requires them).

The use of both new constructors leads to the general scheme depicted in
Figure 1. By combining the new process abstractions processObs and ## we
obtain four relevant data. These data provide us with two critical measures
concerning the usefulness of the speculation at this point of the program. On
the one hand, the difference between outsFromProcess and insFromProcess
gives us how much unnecessary speculative work was done by the new process.
On the other hand, the difference between outsToProcess and insToProcess
provides us a measure to know how much unnecessary speculative work was
performed by the process creating the new instantiation.

Let us note that the definitions of processObs and ## could be trivially ex-
tended to include extra parameters representing the strings that want to be used

288 A. de la Encina, I. Rodŕıguez, and F. Rubio

Fig. 1. Invoker and Instantiated Processes

for marking the inputs and outputs of the processes. Moreover, we can also in-
clude references to the processor where the process is actually being executed
(denoted in Eden by selfPe). In addition to that, taking into account that
observe can also observe functions, we can reduce the number of times we use
observe by observing the functions themselves instead of looking independently
to the inputs and outputs. Summarizing, the following definitions obtain all this
information:

processObs str f = pf (observe (str ++ (’_’: show selfPe)) f)
where pf f = process x -> f x

instProcessObs str p args =
(observe (str ++ (’_’ : show selfPe)) (\x -> p # x)) args

where str is a string parameter. Note that now the instantiation is performed
by using a function (instProcessObs) instead of using an infix operator (##)
because now we have to deal with three parameters (the string, the process and
the arguments).

In fact, the framework can be easily applied to other general schemes and
programming structures in Eden. In particular, all the skeletons defined in the
Eden library have been trivially rewritten in terms of the new process abstraction
and process instantiation operators. Hence, they inherit the capability to test
the amount of speculative work. As an example, let us consider the most simple
skeleton: The map skeleton can be defined in Eden as follows:

map_par f xs = [(process x -> f x) # x | x <- xs] ‘using‘ spine

This skeleton is trivially rewritten to include all the relevant observations. In
particular, we can easily assign a different number to each of the taks of the list
as follows:

map_parObs f xs = [instProcessObs ("invoker"++show i)
(processObs ("childProcess"++show i) f)
x | (x,i) <- zip xs [1..]] ‘using‘ spine

A Debugger for Parallel Haskell Dialects 289

3.3 Dealing with Other Haskell Dialects

As the reader can imagine, in order to deal with any other parallel Haskell
dialect it is only necessary to apply a scheme similar to that presented in the
previous subsection. Let us remark that our basic parallel Hood library has been
implemented as an independent library that can be used by any Haskell compiler.
Thus, we do not need to modify the parallel Haskell compilers. We only need to
encapsulate the basic constructions of each parallel dialect (process and # in the
case of Eden) to introduce calls to the basic observe function in the appropriate
places. This is quite simple, as most parallel Haskell dialects use very few extra
constructions.

4 Analyzing Speculation: A Case Study

In this section we present the graphical feedback that can be obtained by us-
ing our debugger. In particular, we show how we can analyze both the final
speculation of a program and the races between processes during runtime. As
a running example, we will use the linSolv algorithm. This algorithm finds
an exact solution of a linear system of equations of the form Ax = b where
A ∈ Z

n×n, b ∈ Z
n, n ∈ N. The algorithm presented here finds an exact solution

and works over arbitrary precision integers. To find an exact solution for a given
system of equations, linSolv uses a multiple homomorphic images approach.
It consists of the following three stages: (1) map the input data into several
homomorphic images; (2) compute the solution in each of these images; and (3)
combine the results of all images to a result in the original domain.

This structure is particularly useful for operations on arbitrary precision in-
tegers. In this case the original domain is Z, the set of all integer values, and the
homomorphic images are Z modulo p, written Zp, with p being a prime number.
If the input numbers are very big and each prime number fits into one machine
word the basic arithmetic in the homomorphic images is cheap because fixed
precision arithmetic can be used. Only in the combination phase, when applying
a fold-based Chinese Remainder Algorithm (CRA) (see [7]), expensive arbitrary
precision arithmetic has to be used to construct the result values.

Details about the implementation of linSolv in Haskell can be found in [8].
In brief, the main part to be parallelized consists in solving each of the homo-
morphic images, whose basic definition is: xList = map get_homSol primes
where primes is an infinite list of primes, and get homSol solves the system
modulo a given prime. Thus, the basic parallel structure of the algorithm con-
sists in performing all computations in the homomorphic images in parallel. It
uses LU-decomposition followed by forward and backsubstitution to compute
the solution in the homomorphic image [11]. From a speculation point of view,
the main difficulty in the parallelization is that we have to make sure that new
results are computed if primes turn out to be “unlucky”, i.e. if the determinant of
the input matrix A in the homomorphic image generated by this prime number
is zero.

290 A. de la Encina, I. Rodŕıguez, and F. Rubio

xList_all = map_farm get_homSol primes

xList = filter lucky xList_all

Fig. 2. Parallel linSolv (Eden speculative version)

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Seconds

D
at

a

Process 1

Process 2

Process 3

Process 4

Process 5

Process 6

Process 7

Process 8

Total

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Seconds

D
at

a
Fig. 3. 8 processes speculative version. Speculation in inputs (left) and outputs.

xList_all = map_farm get_homSol primes’

xList = filter lucky xList_all
xList_unlucky = filter (not.lucky) xList_all

(p_needed, p_spec) = splitAt (1 + toInt noOfPrimes) primes
primes’ = p_needed ++ (additional xList_unlucky p_spec)

additional :: [Integer] -> [Integer] -> [Integer]
additional xs ys = zipWith (\ x y -> y) xs ys

Fig. 4. Parallel linSolv (Eden conservative version)

As we have to solve the linear system modulo several prime numbers, the
most obvious parallel scheme is to use a map par scheme so that an independent
process is created for each prime. However, as a simple improvement, we can
use a map farm scheme so that we only create the same number of processes
as processors are available in the system. So, in our first approach (shown in
Figure 2) we just replaced the top level map by its parallel counterpart map farm.
Unfortunately, when using the map farm version that includes observations, our
tools detected a quite big amount of useless work. For instance, as shown in
Figure 3, in a small system with 10 equations, 14000 useless data were computed.
Obviously, this problem reduces the overall efficiency of the program.

Notice that the main problem in the first implementation is that we are using
an infinite list without control. This is not a problem in a sequential Haskell
version, because the laziness of the language guarantees that only the needed
elements of the list are actually computed. However, the eagerness of the parallel
version creates extra demand for all the elements of the (infinite) list. Thus, the
programmer should take care of this issue to avoid creating too much speculation.

As a second approach, to avoid the potential waste of resources due to spec-
ulation we used a conservative version as shown in Figure 4. In this version
the prime numbers are divided into those known to be needed (p needed) and
those which are only needed if some of the earlier primes are unlucky (p spec).

A Debugger for Parallel Haskell Dialects 291

0

5

10

15

20

25

30

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 169 177

Seconds

D
at

a

Process 1

Process 2

Process 3

Process 4

Process 5

Process 6

Process 7

Process 8

Total

0

5

10

15

20

25

30

35

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 169 177

Seconds

D
at

a

Fig. 5. 8 processes conservative version. Speculation in inputs (left) and outputs.

xList_all = map_rw get_homSol primes

xList = filter lucky xList_all

Fig. 6. Parallel linSolv (Eden semi-speculative version)

The function additional adds for each unlucky prime a new prime number to
the task list primes’. Note in the definition of additional that, due to the
demand-driven evaluation, the availability of unlucky primes in xs triggers the
generation of one result element in ys. As it can be seen in Figure 5, by using
this conservative version, the final amount of useless work was zero, even though
now we are using a larger problem size. Unfortunately, this does not necessarily
implies optimal speedups. The problem is that we have avoided useless work,
but at the cost of reducing the average parallelism in the last part of the com-
putation. Let us remark that the parallelism degree is good while the system is
working on the p needed primes. However, the generation of the p spec primes
is performed in a completely lazy form. Thus, they are only created when we are
completely sure that they will be needed. This introduces sequentiality in the
last stages of the computation. Fortunately, in most cases the number of unlucky
primes is small, so that the length of p spec is also small. Hence, the part of the
computation where parallelism is reduced is relatively small. Anyway, in some
cases this part of the computation can be more relevant. Therefore, we should
try to avoid this problem.

Finally, we used a third solution where speculation was restricted but not
completely avoided. In this sense, we used a variation of the task farm skeleton.
More specifically, we used the replicated workers paradigm. A manager and a
set of worker processes are created, and two tasks are initially released to each
of the workers. As soon as any worker finishes a task, it sends the result to the
manager, and a new task is delivered to the worker. The computation in the
manager is demand-driven and triggered by the availability of result values. As
soon as the manager has all the needed results it terminates all the worker pro-
cesses. Notice that in this semi-speculative version the workers may be working
speculatively on useless tasks, but only when the useful tasks have already been
consumed and hence the degree of speculation is tightly limited. More details
about the replicated workers skeleton can be found in [6]. Figure 6 shows the

292 A. de la Encina, I. Rodŕıguez, and F. Rubio

0

1

2

3

4

5

6

7

8

9

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201

Seconds

D
at

a

Process 1

Process 2

Process 3

Process 4

Process 5

Process 6

Process 7

Process 8

Total

0

2

4

6

8

10

12

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201

Seconds

D
at

a

Fig. 7. 8 processes semi-speculative version (buffer size 2). Speculation in inputs (left)
and outputs (right).

0

5

10

15

20

25

30

35

40

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211

seconds

d
at

a

Process 1

Process 2

Process 3

Process 4

Process 5

Process 6

Process 7

Process 8

Total

0

2

4

6

8

10

12

14

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211

Seconds

D
at

a

Fig. 8. 8 processes semi-speculative version (buffer size 5). Speculation in inputs (left)
and outputs (right).

Eden code for the semi-speculative version of linSolv. The only modification
to the sequential code is the use of a parallel replicated workers map (map rw)
instead of a sequential map over the infinite list of primes. By using this new
version, only one useless message was sent by each process, as it can be seen in
Figure 7. That is, the speculation was actually controlled.

Let us remark that in the semi-speculative version each process receives two
tasks initially. In fact, we can consider that each process has an input buffer
of size two. This buffer is used to avoid wasting time waiting for data. Let us
consider using a bigger buffer to be sure that processes never get blocked waiting
for data. Figure 8 shows the results obtained with a buffer of five elements. In
this case, each process handles four useless data (buffer size minus one), while
the number of elements in its input buffer is never less than three. That is, it is
never waiting for data. Hence, it seems that a smaller buffer size (two or three)
is enough for optimizing this problem.

Summarizing, we have shown how the graphical feedback provided by our
tools allows the programmer to analyze the amount of speculative work done in
the program. By using this information, the programmer can easily improve the
performance of the implementation.

A Debugger for Parallel Haskell Dialects 293

5 Conclusions

In this paper we have presented a debugger that can be used to analyze the
amount of speculative work done in a parallel Haskell dialect. Moreover, the
tool provides graphical information showing the races between producer and
consumer processes. We have shown the usefulness of the tool with a concrete
case study that consists in solving a linear system of equations.

As we have implemented the debugger as a library completely independent of
the concrete parallel compiler, it can be used with any parallel Haskell dialect. In
order to handle a concrete dialect, we only need to rewrite the basic constructions
of the language to include appropriate calls to the basic function observe.

References

1. Cole, M.: Algorithmic Skeletons: Structure Management of Parallel Computations.
Research Monographs in Parallel and Distributed Computing. MIT Press (1989)

2. Cole, M.: Bringing skeletons out of the closet: A pragmatic manifesto for skeletal
parallel programming. Parallel Computing 30, 389–406 (2004)

3. Gill, A.: Debugging Haskell by observing intermediate data structures. In: Proceed-
ings of the 4th Haskell Workshop. Tech. Rep. University of Nottingham (2000)

4. Kelly, P.H.J.: Functional Programming for Loosely-Coupled Multiprocessors. Re-
search Monographs in Parallel and Distributed Computing. MIT Press (1989)

5. Klusik, U., Loogen, R., Priebe, S., Rubio, F.: Implementation skeletons in Eden:
Low-effort parallel programming. In: Mohnen, M., Koopman, P. (eds.) IFL 2000.
LNCS, vol. 2011, pp. 71–88. Springer, Heidelberg (2001)

6. Klusik, U., Peña, R., Rubio, F.: Replicated workers in Eden. In: Constructive
Methods for Parallel Programming, CMPP 2000, pp. 143–164. Nova Science (2000)

7. Lipson, J.D.: Chinese remainder and interpolation algorithms. In: Symp. Symbolic
and Algebraic Manipulation, SYMSAM 1971, pp. 372–391. Academic Press (1971)

8. Loidl, H.W., Rubio, F., Scaife, N., Hammond, K., Horiguchi, S., Klusik, U., Loogen,
R., Michaelson, G.J., Peña, R., Rebón Portillo, Á.J., Priebe, S., Trinder, P.W.:
Comparing parallel functional languages: Programming and performance. Higher-
Order and Symbolic Computation 16(3), 203–251 (2003)

9. Loogen, R., Ortega-Mallén, Y., Peña, R., Priebe, S., Rubio, F.: Parallelism ab-
stractions in Eden. In: Rabhi, F.A., Gorlatch, S. (eds.) Patterns and Skeletons for
Parallel and Distributed Computing, pp. 95–128. Springer (2002)

10. Peyton Jones, S.L., Hughes, J.: Report on the programming language Haskell 98.
Technical report (February 1999), http://www.haskell.org

11. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: LU Decomposition and Its
Applications. In: Numerical Recipes in C: The Art of Scientific Computing, 2nd
edn., Cambridge University Press (1992)

12. Scaife, N., Horiguchi, S., Michaelson, G., Bristow, P.: A parallel SML compiler
based on algorithmic skeletons. Journal of Functional Programming 15(4), 615–
650 (2005)

13. Trinder, P.W., Hammond, K., Mattson Jr., J.S., Partridge, A.S., Peyton Jones,
S.L.: GUM: a portable parallel implementation of Haskell. In: Programming Lan-
guage Design and Implementation, PLDI 1996, pp. 79–88. ACM Press (1996)

14. Trinder, P.W., Loidl, H.W., Pointon, R.F.: Parallel and distributed Haskells. Jour-
nal of Functional Programming 12(4-5), 469–510 (2002)

http://www.haskell.org

Introducing Aspects to the Implementation

of a Java Fork/Join Framework

Chrysoulis Zambas and Mikel Luján

School of Computer Science, The University of Manchester
Oxford Road, Manchester, M13 9PL, United Kingdom

Abstract. When faced with the question of how will a program exploit
the current and upcoming chip multiprocessors, many answers can be
produced. Two of the most promising answers are: (1) frameworks or
libraries where experts have encapsulated the parallelism, and (2) work
stealing as a means of load balancing the work. This paper presents a
study of whether aspect-oriented programming can benefit the imple-
mentation of a well-known Java framework for divide-and-conquer ap-
plications that relies on random work stealing. Despite different kinds of
aspects being introduced, the performance evaluation shows no signifi-
cant overhead due to their inclusion.

1 Introduction

Goetz announced in a recent article that one of the new additions of Java 7
will be a fork-join framework [6]. Furthermore the fork-join approach is actively
being used by the new languages X10 [3] and Fortress [2] under development
by the DARPA initiative on High Productivity Computing Systems. This paper
presents a study of whether Aspect-Oriented Programming (AOP) can ben-
efit the implementation of a well-known Java framework [11] for divide-and-
conquer applications that relies on random work stealing. These applications
solve a problem by recursively decomposing it into independent sub-problems,
which can be executed concurrently, and whose output is the composition of the
sub-problems’ outputs. These applications take the general form illustrated in
Figure 1.

Section 2 presents an introduction to AOP and AspectJ. The Java Fork/Join
framework (FJF) is described in Section 3. The framework is improved by en-
forcing synchronization and parallelization protocols as aspects, by enabling a
limited multi-inheritance relation and improving encapsulation of some internal
interfaces. A further improvement is the development of aspects that help de-
velopers that use the FJF to prevent future bugs on their systems (see Section
4). The new framework using these aspects is evaluated for performance. Six
benchmarks are used to evaluate whether the AOP version of the FJF pays an
overhead versus the highly optimized Java framework (see Section 5). Finally, a
summary of the paper is presented in Section 6.

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 294–304, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Introducing Aspects to the Implementation of a Java Fork 295

result solve(Problem problem) {
if (problem is small)

directly solve the problem

else {
split problem into independent parts

fork new subtasks to solve each part

join all subtasks

compose results from subresults

}
}

Fig. 1. Pseudocode for a Fork/Join application

2 Background

Experience from object-oriented software development has produced examples
where a class is not the best unit of modularization. There are concerns (func-
tionality) that span more than one class, the crosscutting concerns. AOP in-
troduces a new modularization unit, an aspect, to improve the separation of
concerns. Crosscutting concerns can be implemented inside an aspect and main-
tained separately from other classes, instead of inserting them in the middle.
AOP promises higher modularity and easier system evolution.

In a nutshell an aspect describes what needs to be done and where it needs
to be applied. The “where” part determines the location in the normal execu-
tion flow of a program that needs to be altered to introduce the crosscutting
concern. Examples of where AOP can be an improvement over Object-Oriented
Programming (OOP) are characterized as:

– Code scattering: one logical functionality (concern) can not be implemented
in just one class and pieces or repeated pieces of code are spread among
multiple class.

– Code tangling: one class implements more than one concern.

AspectJ is an aspect-oriented extension of Java which generates standard
bytecodes [1] and is considered the most mature AOP language. AspectJ defines
two types of crosscutting concerns:

– Dynamic: The normal programexecution flow is modified by adding a concern.
– Static: The static structure of classes, interfaces and other parts of the system

is altered (e.g. introduction of a new object field, type-hierarchy modification,
compile-time errors and exceptions changes).

The aspect is the main unit of AspectJ and contains all the code needed to
implement dynamic and static crosscutting concerns. An aspect is made up of
pointcuts, advices, and introductions. An aspect can also use any programming
constructors available in Java classes.

296 C. Zambas and M. Luján

class Hel lo {
public stat ic void pr in t () {

System . out . p r i n t l n (” He l lo ”) ;
}

}

aspect CountHel los
{

int counter ;
private int Hel lo . va l ;

pointcut he l l oPo in t cu t () : ca l l (∗ Hel lo . p r i n t (. .)) ;

before () : h e l l oPo in t cu t () {
counter++;

}
}

Fig. 2. Simple aspect

An example is presented next to illustrate the different parts of an aspect.
Figure 2 shows a simple aspect that counts the number of times the method
print in class Hello is executed. The pointcut helloPointcut specifies the
join points of the program corresponding to invocations of print. One pointcut
can combine several join points. The main categories of join points are methods
(including constructors), field access (access is only to data members), exception
handler execution, and class and object initialization. During execution, each
time the join point is reached the advice which increments the variable counter
is executed before invoking the method. Furthermore, a new field is added to
the class Hello, called val with the use of the introduction feature. An advice
in AspectJ is similar to a method in Java, although there are three ways of
executing the advice: before, after, or around the pointcut. The before advice
body executes before the pointcut, while after advice bodies execute right after
the pointcut execution. An around advice surrounds the pointcut and even can
disallow the execution of the captured pointcut.

3 The Fork/Join Framework

This section introduces the Fork/Join Framework (FJF) developed by Lea
(see [11] for more details). The key design issues for the framework include
(i) lightweight classes for creating fork/join tasks, (ii) efficient task storage
data structures, and (iii) efficient scheduling algorithms. Java itself provides
the java.lang.Thread class that can be used to represent the fork/join tasks.
However, this class is not used because the synchronization and scheduling
of fork/join tasks are simpler compared to those of general-purpose threads;

Introducing Aspects to the Implementation of a Java Fork 297

Fig. 3. UML class diagram for the FJF

fork/join tasks rarely need to block. Another reason is that the cost of creating,
managing and destroying a Java thread might be greater than the cost of running
a task.

Figure 3 shows a Unified Modelling Language (UML) class diagram of the
FJF’s key classes, methods and fields. The class FJTaskRunnerGroup manages
a group of threads (instances of the class FJTaskRunner) that will run tasks.
This thread pool is created at the start of the application and remains alive
until the end. The number of threads in the pool (field groupSize) should be
equal to the number of processors on the computer. It is then hoped that the
operating system will map each of these Java threads to a processor. Although
this is common in most operating systems, it is not guaranteed. The group has
a task queue (field entryQueue) for storing tasks for the whole group. The class
extends the Executor interface, which contains a single method execute(). This
method is used to send a task for execution and return immediately. The method
invoke() is used to send a task and wait for the task to be completed before
returning.

The class FJTaskRunner extends the class java.lang.Thread class and its
instances are the worker threads of the framework. Each task runner has its own
task queue (field deq). All a thread does is pop tasks from this queue and run
them. If it has finished executing all the tasks in its own task queue, it tries to
steal some tasks from other task runners. If this fails, the thread then attempts
to steal a task from the group wide task queue of the FJTaskRunnerGroup class.
If it fails to steal any tasks it waits for a short time before attempting to steal
again (new tasks might be added to the group queue, or other threads might
spawn new tasks).

All fork/join tasks that will be executed by the framework must inherit from
the abstract class FJTask. It implements the Java interface java.lang.Runnable
which requires that its subclasses define the method run(). This method contains
all the code to be run by the instances of FJTaskRunner. Its key methods include
fork(), which arranges for the execution of a dependent task, and join(), which

298 C. Zambas and M. Luján

allows a task to wait for dependent tasks. The method isDone() is a completion
status indicator. The methods invoke() and coInvoke() are used to execute
one or more tasks and wait for their completion.

4 Applying Aspects

The AspectJ implementation of the FJF is illustrated in Figure 4. This imple-
mentation involved creation of four different aspects, which appear at the bottom
of the figure.

4.1 InterfacesAspect Aspect

The first aspect, InterfacesAspect, implements the interfaces Puttable,
Takable, Channel and Executor. These interfaces are not illustrated in the
UML class diagram of the FJF as they represent internal mechanisms.

Hannemann et al. [7] explains that when software systems have role interfaces
that need not be client-accessible functionality, then those interfaces are better to
be declared inside an aspect and when needed, the compile-time declaration mech-
anism of AspectJ can be used. The declare parents construct is part of the As-
pectJ open class mechanism. It allows aspects to modify existing classes by attach-
ing fields, methods or, as in this case, interfaces. These interfaces are not accessible
by the client classes and thus simplifies and enforces the interface to the clients.

4.2 StaticWarnings Aspect

The second aspect, StaticWarnings, uses the compile-time warnings mechanism
of AspectJ. The FJF can be extended, but there are many issues that must
remain unchanged. For example, Lea explains that the method isDone() is

Fig. 4. UML class diagram for the FJF including aspects

Introducing Aspects to the Implementation of a Java Fork 299

“intended only to be called by FJTaskRunner.” This means that only the worker
threads can set tasks as finished. These issues are captured inside this aspect, and
compile-time warnings are used, to help any programmers that need to extend
the framework to avoid unnecessary bugs. The four warnings are the following:

– Warning 1: The method FJTaskInterface.setDone() should only be called
by the FJTaskRunner class. In other words, only the worker threads should
terminate tasks.

– Warning 2: The methods FJAspect.yield() and FJAspect.join() must
never be called when a lock is held. This means, they must not be called by
synchronized methods or when a lock is acquired through the Lock interface.
This is because multiple tasks can be run by the same thread during a yield
and since locks are held per-thread, the lock would not maintain the desired
exclusion.

– Warning 3: The field FJTaskRunner.active should be accessed only by
objects of the class FJTaskRunnerGroup. This is because this field records
whether current thread may be processing a task or not.

– Warning 4: The last warning is that the size of the FJTaskRunnerGroup
should be equal to the number of CPUs on the system. Lea [10] explains
that this should guarantee better performance.

4.3 DynamicWarnings Aspect

The third aspect is called DynamicWarnings. This aspect prevents any race con-
ditions that might be caused when threads (instances of the class FJTaskRunner)
call their methods take(), push and pop() while not being the current thread.
This is an example of how AOP can be used to enforce implementation protocols
to prevent errors that might occur during runtime.

4.4 FJAspect Aspect

The fourth aspect is the FJAspect (see Figure 5) and replaces the implementa-
tion of the class FJTask.

In Lea’s FJF implementation, any class that wants to be a task must ex-
tend the class FJTask. However, Java does not allow multiple inheritance. This
can limit or compromise the implementation of a design. However, with As-
pectJ it is possible to replace an abstract class with an interface without loosing
the ability to attach implementations to their methods. This is done with the
inter-type declarations mechanism of AspectJ. The abstract class FJTask has a
single boolean field, isDone, six static methods and seven methods. The interface
FJTaskInterface and the aspect FJAspect replace the abstract class FJTask.
Inside the FJTaskInterface all the non-static methods of the original FJTask
are declared. The static methods are implemented in the aspect FJAspect. In
this aspect also the boolean field isDone is declared and the implementations of
the non-static methods are provided.

In this way, now the classes can implement the FJTaskInterface and extend
any other classes if necessary. The mechanism used can be considered to be a
limited form of multiple inheritance.

300 C. Zambas and M. Luján

Fig. 5. UML class diagram for FJAspect

5 Performance Evaluation

The objective of the performance experiments are to understand whether there
is a cost for using AOP in the implementation of the FJF.

The experiments are performed on a shared memory 8-core (i.e. 4 dual core)
Opteron 2.4GHz machine running openSUSE 10.1 64-bit and JDK 1.6 64-bit
with 1, 2, 4, 6 and 8 threads. The performance graphs report the speedup cal-
culated against the sequential execution of the FJF without any aspect; i.e. OO
implementation. The benchmarks are run 5 times and the average execution
times are used in the graphs.

The first benchmark, Fibonacci, calculates the fibonacci number of 40.
Figure 6 presents the speedup graph. The second benchmark implements a merge

Fig. 6. Fibonacci benchmark

Introducing Aspects to the Implementation of a Java Fork 301

sort algorithm on an array of integers with 50 million elements (see Figure 7). The
third benchmark, Integrate, performs recursive Gaussian quadrature for a given
function integrating from 1 to 200 (see Figure 8). The fourth benchmark, matrix
multiply, multiplies two square matrices of floats with size 2048 (see Figure 9). The
fifth benchmark implements an LU decomposition on a matrix of doubles with size
2048 (see Figure 10). The sixth and final benchmark performs an iterative mesh
relaxation, Jacobi, over a square matrix of doubles with size 2000.

In all the performance figures, AO-S represents the FJF using only the
static aspect called StaticWarnings (see Section 4.2). AO-D represents the FJF

Fig. 7. Merge sort benchmark

Fig. 8. Integrate benchmark

302 C. Zambas and M. Luján

Fig. 9. Matrix Multiplication benchmark

Fig. 10. LU benchmark

using only the dynamic aspect called DynamicWarnings (see Section 4.3). AO-
P represents the FJF using only the aspect that improves programmability by
improving the use of interfaces (see Section 4.1). Finally, AO-T represents the
FJF using all the aspects introduced in the paper.

Although some differences in the execution times are observed in the graphs,
these variations are within the standard deviation of the measured execution
time. There is no indication that any of the AspectJ implementations of the
FJF is introducing a noticeable overhead over the OO version.

Introducing Aspects to the Implementation of a Java Fork 303

Fig. 11. Jacobi benchmark

6 Summary

This paper has illustrated that the implementation of the FJF can be improved
using AOP. Specially interesting is the usage of aspects to enforce comments
describing synchronization or parallelization protocols. The performance evalu-
ation has showed that no significant overhead is paid for using AOP.

Our group has also investigated how to separate concerns in parallel scien-
tific codes using AspectJ [8] which motivated a new join point for loops which
was demonstrated by parallelizing loops [9]. Cunha et al. [4] developed Aspect-
Oriented (AO) implementations of 8 concurrency mechanisms and patterns.
These two papers are the closest related work. The FJF can be seen as the
implementation of a concurrent design pattern. The first project that studied
the relationship between design patterns and AOP was done by Hanneman and
Kickzales [7] and then extended by Garcia et al. [5]. However neither of these
papers addressed concurrency patterns.

References

1. AspectJ documentation (Last accessed, March 2008),
http://www.eclipse.org/aspectj/docs.php

2. Fortress Programming Language (Last accessed, March 2008),
http://projectfortress.sun.com

3. The X10 programming language website (Last accessed, March 2008),
http://x10.sourceforge.net/x10home.shtml

4. Cunha, C.A., Sobral, L., Monteiro, M.P.: Reusable aspect-oriented implementa-
tions of concurrency patterns and mechanisms. In: AOSD 2006: Proceedings of
the 5th International Conference on Aspect-oriented Software Development, pp.
134–145 (2006)

http://www.eclipse.org/aspectj/docs.php
http://projectfortress.sun.com
http://x10.sourceforge.net/x10home.shtml

304 C. Zambas and M. Luján

5. Garcia, A., Anna, C.S., Figueiredo, E., Kulesza, U., Lucena, C., von Staa, A.:
Modularizing Design Patterns with Aspects: a Quantitative Study. In: AOSD 2005:
Proceedings of the 4th International Conference on Aspect-Oriented Software De-
velopment, pp. 3–14. ACM Press, New York (2005)

6. Goetz, B.: Stick a fork in it (Last accessed, March 2008), http://www.ibm.com/
developerworks/java/library/j-jtp11137.html?ca=drs-

7. Hannemann, J., Kiczales, G.: Design pattern implementation in Java and AspectJ.
In: Proceedings of the 17th ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages and Applications, pp. 161–173 (2002)

8. Harbulot, B., Gurd, J.R.: Using AspectJ to separate concerns in parallel scientific
Java code. In: Proceedings of the 3rd International Conference on Aspect-Oriented
Software Development, pp. 122–131 (2004)

9. Harbulot, B., Gurd, J.R.: A join point for loops in AspectJ. In: Proceedings of
the 5th International Conference on Aspect-Oriented Software Development, pp.
63–74 (2006)

10. Lea, D.: Concurrent Programming in Java: Design Principles and Patterns.
Addison-Wesley (1999)

11. Lea, D.: A Java fork/join framework. In: Proceedings of the ACM 2000 conference
on Java Grande, pp. 36–43 (2000)

http://www.ibm.com/developerworks/java/library/j-jtp11137.html?ca=drs-
http://www.ibm.com/developerworks/java/library/j-jtp11137.html?ca=drs-

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 305–315, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Analyzing Software Component Graphs of Grid
Middleware: Hint to Performance Improvement*

Pingpeng Yuan, Hai Jin, Kang Deng, and Qingcha Chen

Service Computing Technology and System Lab
Cluster and Grid Computing Lab

Huazhong University of Science and Technology, Wuhan, 430074, China
hjin@hust.edu.cn

Abstract. Grid middleware is a kind of important service management tool and
is composed of different interaction units. The units of a grid middleware do not
interact in random ways and are very well connected. As shown in this paper,
irrespective of the specific features of each grid middleware analyzed, the final
outcome of grid middleware is a small world, hierarchical component diagram
with well-defined statistical properties. These measurements of network are
largely independent of the particular the application and indicated key execu-
tion path or key elements. Therefore, analyzing grid middleware structure can
show a roadmap to tune performance of grid middleware. Based on analysis of
those diagrams, the key components of grid middleware are outlined.

Keywords: Grid computing, Middleware, Performance, Small world.

1 Introduction

Grid middleware is a software stack designed to present disparate computing and data
resources in a uniform manner, such that these resources can be accessed remotely by
client software without knowing a priori the systems' configurations. Thus, develop-
ment of grid middleware is a challenging activity that requires considerable expertise.
Currently there are some grid middleware, such as Globus [1], UNICORE [2] and
gLite [3]. However, due to some reasons, theirs performance is not so good that adop-
tion of grid middleware is restricted to few domain.

Software, including grid middleware is composed of components which interact
with each other. One of the aims of software development is to address the interac-
tions of components. The action of software development leads to emergent software
organizations whose structures lie outside the realm of explicit design. Performance
of software is highly related with software structure. Understanding the structural
features of software systems may provide models, metaphors, and tools to help us
tune performance or reach better design.

Recently, after the underlying structures of many natural and artificial systems
have been found to share many scale-free and small-world qualities, software systems

* This paper is supported by National Science Foundation of China under grant No.90412010.

306 P. Yuan et al.

are identified as another important class of complex networks. Some research de-
clared that the internal structures of software programs exhibit scale-free properties.
For example, Myers [4] studied six open source software projects and showed that the
networks formed by their class collaboration or call graphs showed approximate
scale-free properties. Although, the research mentioned above declared properties of
software networks were scale-free, few research based on software network analysis
were performed on indicating how to improve performance.

The objective of the research is to enhance comprehension about the nature and the
performance factors of grid middleware by quantitative measurement and structural
analysis of existing grid middleware, and try to give some suggestion on performance
optimization of grid middleware during development. Section 2 introduces the related
work. Next section presents software graph and its topological measurement. In sec-
tion 4, three kinds of grid middleware are introduced briefly. Section 5 firstly intro-
duces how to obtain component graph from existing grid middleware, then describes
statistics of component graphs of grid middleware. At the sane time, some discussion
and comments about the implication on grid middleware development are presented.
Finally, section 6 concludes the paper.

2 Related Work

Software is built up out of many interacting units and subsystems at many levels of
granularity: subroutines, classes, source files, libraries, et al. Performance of software
systems is tightly related with measures of software. Early measures of software were
centered in intra-module aspects like program length or number of lines of code
(LOC). Those measures cannot reflect complicated relationship between software
units. Recently, there is a growing interest in analyzing software structure or software
architecture measurement (inter-module). So, graph theory, which studies the proper-
ties of graphs, has been widely accepted as a tool to analyze software unit diagrams.
The study of graph properties can be valuable in many ways for understanding the
characteristics of the underlying software systems.

Current graph theory based research mainly focused on indicating statistical char-
acteristics of software unit diagram. Many researches have found software unit dia-
gram is scale-free network. Nathan LaBelle and Eugene Wallingford [5] analyzed
complex networks in open-source software at the inter-package level and showed that
the coupling of modules at this granularity creates a small-world and scale-free net-
work. Valverde et al [6] presented the evidence for the emergence of scaling in soft-
ware architecture graphs from a well-defined local optimization process. Alex Potanin
et al [7] examined the graphs formed by object-oriented programs written in a variety
of language, and showed that these turn out to be scale-free networks. Alexander
Chatzigeorgiou et al [8] presented four different applications of graph theory concern-
ing: the identification of God classes, clustering, detecting of design patterns and
scale-freeness of OO systems. Spiros Xanthos [9] used spectral graph partitioning for
identifying dense communities of classes (clusters) within an object-oriented software
system.

To improve the underlying development processes, some research paid attention to
software evolution. Sergi Valverde and Ricard V. Solé [10, 11] analyzed some large

 Analyzing Software Component Graphs of Grid Middleware 307

software applications and found software evolution is a small world. Luis Lopez-
Fernandez et al [12] proposed the use of social network analysis for characterizing
libre software projects, their evolution over time and their internal structure. Rajesh
Vasa [13] presented recurring high-level structural and evolutionary patterns that had
been observed in a number of public-domain object-oriented software systems and
defined a simple predictive model that could aid developers in detecting structural
changes. de Moura et al [14] showed that due to software growth in time, especially
as a result of performance optimization of the program, software unit network has a
small-world structure, as a consequence, to optimize language runtime systems and
improve the design of future OO languages.

Other research investigated community network of developers. Patrick Adam
Wagstrom et al [15] analyzed several methods of communication, a social networking
site, project mailing lists, and developer weblogs, to understand the social network
structure behind Free and Open Source Software (F/OSS) projects. This social net-
work data was used to create a model of F/OSS development. Yongqin Gao and Greg
Madey [16] studied the community network of the SourceForge.net to understand the
open source software movement, to gain insights of the network development and its
influence to individual development.

3 Software Graphs

Software is composed of many interacting units and subsystems at many levels of
granularity. The interactions and collaborations of those units can be used to define
graphs that form a description of a system. Here we use a broader unit definition
that depends on the different granularity level. In package level, the unit is package,
in class and method level, the units are class and method respectively. Unit depend-
ency represents ways of information transfer between components. Designing soft-
ware involves the definition of an information flow traversing a chain of related
components. High software performance means efficient information transferring
between components. This requires understanding the interactions among software
units.

The interactions between software units are multidimensional and multifaceted,
and representation of a software system typically involves a very complex space of
interactions. In order to understand the interaction network, a graph G=(V, E) for the
software under consideration is defined. Let V={vi} (i = 1, …, N) be the set of nodes
and L={(vi, vj)} the set of links. Node of unit diagrams maps to a function or proce-
dure in method level, a class in class level and a package in package level. Topologi-
cal measurements of software graph include degree distribution, clustering, and be-
tweenness. Here, we focus on those measurements related with performance. Those
measurements include degree and betweenness. In the following, these measurements
are presented briefly.

3.1 Degree

For each node i in a unit graph, there is both an in-degree in
ik and an out-degree

out
ik . The performance of a unit is related with the performances of its dependency.

308 P. Yuan et al.

The in-degree and out-degree of a method are the numbers of called and calling. The
in-degree and out-degree of a class are the sum of in-degree and out-degree of its
methods respectively. Similarly, the in-degree and out-degree of a package are the
sum of in-degree and out-degree of its classes. The in- and out-degree distributions
Pin(k) and Pout(k) indicate the probability of finding a node with a specified in-degree
or out-degree k, respectively, in a given graph. Many complex networks have recently
been found to possess a power law distribution, where the probability, P(k), of a par-
ticular node having a certain number of connections, k, decays with the power law
P(k)~k-γ, where generally 2<γ<3.

3.2 Betweenness

Betweenness plays a key role in the characterization of complex networks, which can
be used to quantify a node’s importance. Betweenness of a vertex measures the con-
trol which a vertex has over interaction in the network, and can be used to identify
key actors in the network. High betweenness indicates that a vertex can reach other
vertices on relatively short paths, or that a vertex lies on a considerable fraction of
shortest paths connecting pairs of other vertices. For software system, betweenness
reflects the possible execution path needed to carry by the node, thus it can be used to
predict the key nodes related with software performance.

4 Grid Middleware

There exist some famous grid middleware, for example, Globus Toolkit, UNICORE,
gLite. In the following, we will introduce those grid middleware simply.

Globus Toolkit is a fundamental enabling technology for the grid. It includes core
services, interfaces and protocols allow users to access remote resources transpar-
ently. In this paper, we only analyze GT4 Core and related packages. GT4 Core im-
plements the Web Services Resource Framework (WSRF) and the Web Service Notifi-
cation (WSN) family of standards. It provides APIs and tools for building stateful
web services.

UNICORE (UNiform Interface to COmputing REsources) offers a ready-to-run
grid system including client and server software. UNICORE makes distributed com-
puting and data resources available in a seamless and secure way through intranets
and internet.

gLite is the next generation middleware for grid computing. As part of EGEE pro-
ject, gLite provides a bleeding-edge, best-of-breed framework for building grid appli-
cations tapping into the power of distributed computing and storage resources across
the Internet.

5 Result Analysis

Grid middleware is built up out of many interacting units and subsystems at many
levels of granularities: subroutines, classes, source files, libraries, etc. In order to
improve the statistic analysis, we have constructed unit diagrams from a variety of

 Analyzing Software Component Graphs of Grid Middleware 309

grid middleware. The unit diagrams include method diagrams, class diagrams and
package diagrams. The unit diagrams, especially method diagrams are very complex.
In fact, the diagrams are not explicitly provided, but they can be constructed from
source code. We analyze the source codes of Globus Toolkit 4 (GT4), UNICORE and
gLite. Irrespectively which grid middle, method diagrams are the largest diagram
among the diagrams of three levels. The class diagram of GT4 is shown in Figure 1.
The nodes of this diagram are classes of GT4 and the links represented reference
relationships between classes.

Fig. 1. Class diagram of GT4

5.1 Degree Distribution

We have examined the in-degree and out-degree distributions of three level units of
three grid middleware and computed the un-normalized cumulative frequency distribu-
tions Pin(k) and Pout(k). The logarithms of these distributions according to different level
have been plotted in Fig.2, 3, and 4. We do not see a great deal of difference among the
same level diagrams of three grid middleware. In spite of the different designs, sizes of
those grid middleware, their collaboration graphs show very similar properties.

The values of the exponents γin and γout are shown in the legends of Fig. 2, 3, and 4.
In the method graph (Fig. 2), γin are 2.1347 (gLite), 2.1243 (GT4), and 2.0655
(UNICORE) respectively, and γout are 3.7553 (gLite), 3.3938 (GT4), and 3.4726
(UNICORE) respectively. In the class graph (Fig. 3), γin are 2.0671 (gLite), 2.1303
(GT4), and 2.0420 (UNICORE) respectively, and γout are 2.7437 (gLite), 2.7596
(GT4), and 2.6173 (UNICORE) respectively. However, in the package graph (Fig. 4),
γin are 1.8437 (gLite), 1.8112 (GT4), and 1.97 (UNICORE) respectively, and γout are
2.0412 (gLite), 2.2576 (GT4), and 2.2067 (UNICORE) respectively.

310 P. Yuan et al.

Fig. 2. Log-log graphs of the unnormalized cumulative in-degree and out-degree frequency
distributions at method level

Fig. 3. Log-log graphs of the unnormalized cumulative in-degree and out-degree frequency
distributions at class level

 Analyzing Software Component Graphs of Grid Middleware 311

Fig. 4. Log-log graphs of the unnormalized cumulative in-degree and out-degree frequency
distributions at package level

All distributions shown in Figure 2, 3, and 4 include significant linear ranges fol-
lowed by a faster decay at large number of connections (k). This confirms Myers’
finding of the same phenomenon. According to those figures, these distributions re-
veal a power-law scaling region. The extents of the power-law regions are admittedly
small, particularly for the out-degree distributions. Power-law fits for all 18 distribu-
tions have been carried out over the regions for which they exhibit scaling. Analysis
of each graph shows clearly that distributions are approximately linear at each level.
Package, class and method graphs are found to exhibit the same general properties.
However, method degree distributions are found to be generally more linear over the
entire data range than distributions at the package and class levels. Package- and
class-level un-normalized cumulative degree distributions for three grid middleware
look similar, with sparser information and slightly less linear structures.

Comparing γout and γin of three levels, we can find those values in package level are
less than the values of the other two levels. The reason is that the definition of the
package is not clear. We can also find that the out-degree exponent appears to be
significantly larger than the in-degree exponent. The degree exponents, particularly
in-degree exponents in the same level vary slightly. Out-degree exponents tend to
have a larger varying range. Moreover, whether in-degree exponents or out-degree
exponents tends to be smaller when the level is higher. For both sets of graphs, the in-
degree distributions tend to extend to higher k; that is, it is more likely to find a node
with many incoming links than outgoing links. One reason is, since the software de-
velopment practices encourage the creation of small blocks of code (classes and
methods) and significant reuse of those blocks within an application. The other reason

312 P. Yuan et al.

is: after checking the nodes with the largest in-degrees and smallest out-degrees, we
find most of those nodes are from Java API. Most of those nodes which have the
smaller in-degree and larger out-degree are from grid middleware. This is also one of
reason why class collaboration graphs exhibited power-law exponents that are smaller
in out-degree than in-degree and extend this finding to the package and method levels.

Classes and methods with small out-degree are generally simple, since they do not
aggregate other elements. However, if out-degree of classes or methods is too small,
then many procedures are needed for achieving customers’ requirements. Thus, the
performance of grid middleware may be not good since procedural call requires more
CPU time, memory and communication overhead. Conversely, the performance of
elements with large out-degree is generally better. However, elements with large out-
degree are generally more complex because they aggregate behavior from many oth-
ers. Thus, power-law exponents with smaller in out-degree than in-degree suggest a
shallow spectrum of complexities.

5.2 Betweenness

Out-degree and in-degree of nodes indicate nodes’ complexity and reusability. From
many aspects, software performance is related with execution path. So far, current
connectivity metrics consider each node in the execution path to be equally important.
However, for many execution path of a software network, some nodes can be more
important than others. For example, a node with more execution paths can be consid-
ered important.

Betweennes is used to evaluate node’s importance in a network. A node with high
betweenness has great influence over flows in the network. While a node may have
few direct connections -- fewer than the average in the network, it can also play a
broker role in the network if it has one of the best locations in the network, for exam-
ple, it is between two important constituencies. Without the node, the network would
be cut off. A node holds a lot power over the outcomes in a network.

The top ten betweennesses of three level nodes of GT4 have been computed and
are listed in Table 1-3. Different level nodes’ betweennesses of UNICORE are shown
as in Table 4-6. According to Table 1, we can find nine of ten packages are about
wsrf. In nine packages, five packages are about security, especially on authorization
and authentication. The other four packages are about container, encoding, and con-
figuration. Further checking Table 2 and 3, we can find most of class and method
level betweenness are related with package level betweenness. However, there are
some nodes’ betweenness which are not correspondent with high level betweenness,
for example, DelegationUtil, ManagedExecutableJobResource, and DelegationRe-
source of class level, userHasPermissions_0 of method level. The reason why there
exists inconsistency among betweenness of different level nodes is that betweenness
of high level nodes is not the sum of betweenness of low level nodes. Analyzing Ta-
ble 4-6, we can also find there exists inconsistency among three levels betweenness of
UNICORE. In three levels of network, it is noticeable that package
com.pallas.unicore.client, com.fujitsu.arcon.njs.priest and JobContainer class have
larger betweenness. It indicates that those components are important nodes of

 Analyzing Software Component Graphs of Grid Middleware 313

execution paths in grid middleware. Therefore, developers of those grid middleware
should pay more attention to those components if they want to improve the perform-
ance of grid middleware.

Table 1. Package Level Node Betweenness of GT4

Package Betweenness
org.globus.wsrf.container 5103
org.globus.wsrf.impl.security.authorization 2978
org.globus.wsrf.config 2513
org.globus.wsrf.encoding 2313
org.globus.wsrf.impl 2000
org.globus.wsrf.impl.security.authentication.wssec 1274
org.globus.wsrf.impl.security.authentication.secureconv.service 1031
org.globus.axis.description 906
org.globus.wsrf.impl.security.descriptor 870
org.globus.wsrf.impl.security.authentication 738

Table 2. Class Level Node Betweenness of GT4

Class Betwee-nness
org.globus.delegation.DelegationUtil 5547
org.globus.wsrf.encoding.ObjectDeserializer 3876
org.globus.wsrf.encoding.ObjectDeserializationContext 3230
org.globus.wsrf.config.ContainerConfig 3221
org.globus.wsrf.impl.ResourceHomeImpl 2759
org.globus.exec.service.factory.ManagedJobFactoryHome 2400
org.globus.wsrf.impl.security.descriptor.ResourceSecurityDescriptor 2356
org.globus.exec.service.exec.ManagedExecutableJobResource 2285
org.globus.wsrf.impl.security.descriptor.ServiceSecurityDescriptor 2265
org.globus.delegation.service.DelegationResource 2224

Table 3. Method Level Node Betweeness of GT4

Method Betweenness
org.globus.wsrf.impl.security.descriptor.ContainerSecurityConfig.getC
onfig

5350

org.globus.wsrf.impl.security.descriptor.SecurityConfig.initialize 4435
org.globus.exec.utils.FaultUtils.makeFault 4305
org.globus.wsrf.impl.security.descriptor.ContainerSecurityConfig.getC
onfig_0

3686

org.globus.wsrf.encoding.ObjectDeserializer.toObject_0 3669
org.globus.wsrf.container.ServiceHost.getBaseURL 3521
org.globus.wsrf.encoding.ObjectDeserializer.toObject 3418
org.globus.wsrf.impl.security.descriptor.ContainerSecurityConfig.initia
lize

3357

org.globus.wsrf.container.ServiceHost.getBaseURL_0 3356
org.globus.cas.impl.databaseAccess.PermissionsEvaluator.userHasPer
missions_0

3270

314 P. Yuan et al.

Table 4. Package Level Node Betweenness of UNICORE

Package Betweenness
com.fujitsu.arcon.njs.priest 3213
org.openmolgrid.cli 3069
org.openmolgrid.cli.cliq 2530
org.unicore.ajo 2482
org.openmolgrid.client.plugins.meta 2084
com.pallas.unicore.resourcemanager 1338
com.pallas.unicore.client 1140
com.fujitsu.arcon.njs 788
com.pallas.unicore.requests 725
com.pallas.unicore.security 617

Table 5. Class Level Node Betweenness of UNICORE

Class Betweenness
com.fujitsu.arcon.njs.priest.UspaceManager.Uspace 98818
com.pallas.unicore.container.JobContainer 94155
com.fujitsu.arcon.njs.actions.KnownActionFactory 92270
com.pallas.unicore.client.util.ClientPluginManager 71490
com.pallas.unicore.security.JobConverter 60219
com.pallas.unicore.client.explorer.SelectorDialog 56727
com.fujitsu.arcon.njs.priest.BatchTargetSystem 52685
com.fujitsu.arcon.njs.actions.EKnownAction 47187
com.fujitsu.arcon.njs.priest.Seminaries 44699

com.fujitsu.arcon.njs.priest.UspaceManager 41846

Table 6. Method Level Node Betweenness of UNICORE

Method Betweenness
com.fujitsu.arcon.njs.streaming.DoStuff1.<init> 6146
com.fujitsu.arcon.njs.streaming.DoStuff1.listContents 4191
org.unicore.outcome.Outcome.<init>_0 3680
com.pallas.unicore.client.explorer.SelectorDialog.showDialog 3606
com.pallas.unicore.client.trees.JPATree.addGroupNodeAt 3562
com.pallas.unicore.client.trees.JPATree.checkContainers 3401
com.pallas.unicore.client.trees.JPATree.updateCurrentJob 3392
org.unicore.outcome.Outcome.<init> 3379
com.fujitsu.arcon.njs.streaming.DoStuff2.createCommands 3296
com.fujitsu.arcon.njs.actions.IncarnatedPortfolio.createExisting 3226

6 Conclusion

This paper analyzes the unit graph formed in GT4, UNICORE and gLite at the pack-
age, class and method levels and shows that those package, class and method-level
collaboration graphs are nearly scale-free properties at each level analyzed. Previous

 Analyzing Software Component Graphs of Grid Middleware 315

studies mainly focused on class collaboration graphs, especially small linear ranges in
graphs. This work extends that approach to both package and method levels for the
three grid middleware. Based on analysis of grid middleware diagram, the key com-
ponents of grid middleware, which are key performance factors of grid middleware,
are outlined.

References

1. Globus Toolkit, http://globus.org/toolkit/
2. UNICORE (Uniform Interface to Computing Resources), http://www.unicore.eu/
3. gLite, http://glite.web.cern.ch/glite/
4. Myers, C.R.: Software systems as complex networks: Structure, function, and evolvability

of software collaboration graphs. Physical Review E 68, 046116 (1~15) (2003)
5. LaBelle, N., Wallingford, E.: Inter-package dependency networks in open-source software.

CoRR: Software Engineering, 0411096 (November 2004)
6. Valverde, S., Ferrer-Cancho, R., Solé, R.V.: Scale-Free Networks from Optimal Design.

Europhysics Letters 60(4), 512–517 (2002)
7. Potanin, A., Noble, J., Frean, M., Biddle, R.: Scale-free Geometry in Object-Oriented Pro-

grams. Communications of the ACM 48(5), 99–103 (2005)
8. Chatzigeorgiou, A., Tsantalis, N., Stephanides, G.: Application of Graph Theory to OO

Software Engineering. In: Proceedings of International Conference on Software Engineer-
ing, Shanghai, China, May 20-28, pp. 29–36 (2006)

9. Xanthos, S.: Clustering Object-Oriented Software Systems using Spectral Graph Partition-
ing. In: ACM Student Research Competition 2005, Grand Finals, Second Award (2005)

10. Valverde, S., Solé, R.V.: Hierarchical Small Worlds in Software Architecture, Santa Fe In-
stitute working paper SFI/03-07-044 (2003),
http://www.santafe.edu/research/publications/wpabstract/2003
07044

11. Valverde, S., Solé, R.V.: Logarithmic Growth Dynamics in Software Networks. Europhys-
ics Letters 72(5), 858–864 (2005)

12. Lopez-Fernandez, L., Robles, G., Gonzalez-Barahona, J.M.: Applying Social Network
Analysis to the Information in CVS Repositories. In: Proceedings of the 2004 International
Workshop on Mining Software Repositories, Edinburgh, UK, pp. 101–105 (2004)

13. Vasa, R., Schneider, J.-G., Woodward, C., Cain, A.: Detecting Structural Changes in Ob-
ject Oriented Software Systems. In: Proceedings of 2005 International Symposium on
Empirical Software Engineering, Noosa Heads, Australia, November 17-18, pp. 479–486
(2005)

14. De Moura, A.P., Lai, Y.C., Motter, A.E.: Signatures of small world and scale-free proper-
ties in large computer programs. Physical Review E 68, 017102 (2003)

15. Wagstrom, P.A., Herbsleb, J.D., Carley, K.: A Social Network Approach to Free/Open
Source Software Simulation. In: Proceedings of The First International Conference on
Open Source Systems, Genova, Italy, July 11–15, pp. 16–23 (2005)

16. Gao, Y., Madey, G.: Network Analysis of the SourceForge.net Community. In: Proceed-
ings of The Third International Conference on Open Source Systems (OSS 2007), Limer-
ick, Ireland, June 2007, pp. 187–200 (2007)

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 316–317, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Using Multi-core to Support Security-Related
Applications

Wanlei Zhou and Yang Xiang

Deakin University, Melbourne, Australia

Outline

This tutorial introduces the challenges of modern security-related applications and the
opportunities that multi-core technology brings. We envision that multi-core sup-
ported security applications will become the killer applications for next generation
personal computers.

This tutorial is divided into four parts. The first part gives an overview of the
multi-core technology. The related development of both multi-core hardware and
software is introduced.

The second part gives the background knowledge of multiprocessing. Although
multi-core technology has just emerged in very recent years, people have done re-
search in multiprocessing for many years. Computer system technology, computer
performance, computer architecture, and high-performance multiprocessing are dis-
cussed in this part.

Part three, security-related applications, is structured by the attacks and the defense
systems. First, the Internet threats and attacks are introduced. Second, the defense sys-
tems or countermeasures and their effectiveness are discussed. We will see that unfortu-
nately all these security-related applications are computing intensive applications, which
can be difficult to run on today’s personal computers without performance penalties, and
cost huge CPU time and memory if they can. More inconveniently, they prohibit other
applications running simultaneously or significantly slow down other applications.

Part four discusses how we can leverage the power of multi-core to support secu-
rity-related applications. We will discuss five important research areas: partitioning
and distributing workload of security-related applications, fine-grained multi-
threading, smartly using the memory system, communications between cores, and
new software architecture for multi-core. After that, we propose an innovative idea of
software personal computer bodyguard that can protect future personal computers
from various threats at all time and in real-time, with the support from multi-core.
Finally, we point out future research directions and conclude this tutorial.

Target Audience

The audience of this tutorial includes researchers, practitioners, and technical workers
who are interested in network and system security from academic, businesses and
governments. No specific knowledge is required. Anyone with a basic knowledge of

 Using Multi-core to Support Security-Related Applications 317

the Internet and computers will be able to understand the materials presented in the
tutorial.

Bios of the Presenters

Professor Wanlei Zhou received his PhD degree from The Australian National Uni-
versity, Canberra, Australia, in October 1991. He also received the DSc degree from
Deakin University, Victoria, Australia in 2002. He is currently the Chair Professor of
Information Technology and the Associate Dean (International), Faculty of Science
and Technology, Deakin University, Melbourne, Australia. His research interests in-
clude distributed and parallel systems, network security, mobile computing, bioinfor-
matics and e-learning. Professor Zhou has published more than 170 papers in refereed
international journals and refereed international conferences proceedings. Since 1997
Professor Zhou has been involved in more than 50 international conferences as Gen-
eral Chair, Steering Chair, PC Chair, Session Chair, Publication Chair, and PC mem-
ber. Professor Zhou is a member of the IEEE.

Dr Yang Xiang received his PhD in computer science from Deakin University,
Melbourne, Australia, in April 2007. He is currently with School of Management and
Information Systems, Central Queensland University. His research interests include
network and system security, and wireless systems. In particular, he is currently work-
ing in a research group developing active defense systems against large-scale network
attacks and new Internet security countermeasures. He has served as guest co-editor
for Journal of Network and Computer Applications special issue on network and
system security, and the International Journal of Computer Systems Science and En-
gineering special issue on network attack and defense systems. He has served as PC
co-chair for 2007 IFIP International Workshop on Network and System Security and
PC member for many international conferences such as IEEE GLOBECOM
2006/2008 and IEEE ICC 2007. He is a member of the IEEE.

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, p. 318, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Symbolic Analysis for Increased Program Execution
Performance

Kleanthis Psarris

Department of Computer Science
The University of Texas at San Antonio

San Antonio, TX 78249
psarris@cs.utsa.edu

Abstract. High end parallel and multi-core processors rely on compilers to per-
form the necessary optimizations and exploit concurrency in order to achieve
higher performance. However, source code for high performance computers is
extremely complex to analyze and optimize. In particular, program analysis
techniques often do not take into account complex expressions during the data
dependence analysis phase. Most data dependence tests are only able to analyze
linear expressions, even though non-linear expressions occur very often in prac-
tice. Therefore, considerable amounts of potential parallelism remain unex-
ploited. In this talk we propose new data dependence analysis techniques to
handle such complex instances of the dependence problem and increase pro-
gram parallelization. Our method is based on a set of polynomial time tech-
niques that can prove or disprove dependences in source codes with non-linear
and symbolic expressions, complex loop bounds, arrays with coupled sub-
scripts, and if-statement constraints. In addition our algorithm can produce
accurate and complete direction vector information, enabling the compiler to
apply further transformations. To validate our method we performed an experi-
mental evaluation and comparison against the I-Test, the Omega test and the
Range test in the Perfect and SPEC benchmarks. The experimental results indi-
cate that our dependence analysis tool is accurate, efficient and more effective
in program parallelization than the other dependence tests. The improved paral-
lelization results into higher speedups and better program execution perform-
ance in several benchmarks.

Author Index

Acker, Ralph 2
Álvarez-Llorente, Jesús M. 169
Ansari, Mohammad 196

Bandieramonte, Marilena 30
Bayer, Rudolf 2
Beletska, Anna 185
Bielecki, Wlodzimierz 185
Bourgeois, Anu G. 83, 109

Cao, Lei 14
Capizzi, Sirio 265
Carmeli, David 233
Caron, Eddy 257
Chen, Jing 144
Chen, Qingcha 305
Cho, Eunjung 109
Cretu, Vladimir 261

Dai, Yi 14
de la Encina, Alberto 282
Dehne, Frank 121
Deng, Kang 305
Derakhshan, Roozbeh 121
Desprez, Frédéric 257
Di Napoli, Claudia 245
Di Stefano, Antonella 30
Dı́az-Mart́ın, Juan C. 169
Dubitzky, Werner 233

Fahn, Chin-Shyurng 83
Fan, Pingzhi 83
Fernández-Zepeda, José Alberto 109
Fritzsche, P. 97

Giordano, Maurizio 245
Gumaste, Ashwin 144

He, L. 70
Horng, Shi-Jinn 83
Horsnell, Matthew 220
Hou, Chaohuan 18
Hurson, Ali 173

Jarvis, Kim 196
Jin, Hai 305

Kao, Tzong-Wann 83
Karypis, George 42
Kavi, Krishna 173
Kirkham, Chris 196, 220
Korn, Othmar 121
Kotselidis, Christos 196
Kravtsov, Valentin 233

Le Mahec, Gaël 257
Lee, Cheng-Ling 83
Li, Ke 133
Li, Ping 133
Li, Wentong 173
Lin, Shih-Ying 83
Luján, Mikel 196, 220, 294
Luque, E. 97

Ma, Xiaochuan 18
Marowka, Ami 208
Messina, Antonio 265
Morana, Giovanni 30
Moulitsas, Irene 42

Nayebi, Abbas 54

Orda, Ariel 233

Palkowski, Marek 185
Pan, Yi 58
Papadopoulos, George A. 157
Paspallis, Nearchos 157
Paulino, Hervé 269
Perogil-Duque, Francisco J. 169
Psarris, Kleanthis 318

Qiu, K. 70

Rexachs, D. 97
Rico-Gallego, Juan A. 169
Rodŕıguez, Ismael 282
Rogers, Ian 220
Roth, Christian 2
Rubio, Fernando 282

San Pietro, Pierluigi 185
Sarbazi-Azad, Hamid 54

320 Author Index

Schreiner, Wolfgang 261
Schuster, Assaf 233
Shamaei, Arash 54
Shen, Hong 1
Shen, Z.Z. 70
Silberstein, Mark 233
Stantic, Bela 121

Tudor, Dacian 261

Wang, Jianping 144
Wang, Qi 58
Watson, Ian 196, 220
Wei, Wenhong 79

Xiang, Dong 58
Xiang, Yang 316
Xiao, Wenjun 79

Yang, Jun 18
Yao, Zheng 18
Yoshpa, Benny 233
Yu, Hui 144
Yuan, Pingpeng 305

Zambas, Chrysoulis 294
Zhao, Jisheng 220
Zheng, S.Q. 144
Zhou, Wanlei 133, 316

	Title Page
	Preface
	Organization
	Table of Contents
	Smart Content Delivery on the Internet
	Parallel Query Processing in Databases on Multicore Architectures
	Introduction and Related Work
	Encapsulation of Parallelism
	Optimization for Parallel Execution
	Static Parallelization
	Dynamic Load Balancing

	Experimental Results
	Conclusion
	References

	Evaluation of a Novel Load-Balancing Algorithm with Variable Granularity
	Introduction
	The UFFS-k Algorithm
	Performance Simulation and Analysis
	Conclusion
	References

	A Static Multiprocessor Scheduling Algorithm for Arbitrary Directed Task Graphs in Uncertain Environments
	Introduction
	Problem Description
	The DAG Model
	Computing Top Levels

	Scheduling Representation
	Generating Legal Schedule
	Stochastic Programming Model

	Uncertain Intelligent Scheduling Algorithm
	Initialization
	Evaluation
	Crossover
	Mutation

	Performance Results
	Conclusions

	An ACO Inspired Strategy to Improve Jobs Scheduling in a Grid Environment
	Introduction
	The Scheduling Issues in Grids
	Aliened Ant Algorithm
	Algorithm Description

	Simulations Campaign
	Reference Infrastructure
	The Scheduling Algorithms Used for a Comparison
	Performance Evaluations Results

	Conclusion

	Architecture Aware Partitioning Algorithms
	Introduction
	Problem Modeling
	Computational Graph Modeling
	Architecture Graph Modeling

	Metrics Definition
	Framework for Architecture-Aware Partitioning
	Experimental Results
	Quality of the Results
	Comparison between Sparse and Non-sparse Algorithms

	Conclusions

	A Simple and Efficient Fault-Tolerant Adaptive Routing Algorithm for Meshes
	Introduction
	Planar-Adaptive Routing
	Improving the Fault-Tolerant Planar-Adaptive Routing
	Conclusion
	References

	Deadlock-Free Adaptive Routing in 2D Tori with a New Turn Model
	Introduction
	Determination of the Routing Directions in 2-Dimensional Torus Networks
	Odd-Even Turn Model for 2D Tori
	Routing Algorithm
	Deadlock-Freedom Proof of the Deadlock Avoidance Technique in 2-Dimensional Tori
	Simulation Results
	Conclusions

	Neighbourhood Broadcasting and Broadcasting on the (n, k)-Star Graph
	Introduction
	Properties of the (n, k)-Star Interconnection Network
	Broadcasting and Neighbourhood Broadcasting on the (n, k)-Star
	Broadcasting on the Single-Port Model
	Broadcasting on the All-Port Model

	Conclusion

	Fault Tolerance in the Biswapped Network
	Introduction
	Biswapped Network
	Network Connectivity
	Fault Diameter
	Conclusion
	References

	3D Block-Based Medial Axis Transform and Chessboard Distance Transform on the CREW PRAM
	Introduction
	Related Work
	Organization

	The Computation Model and Basic Operations
	The Computation Model
	Basic Operations

	The 3D BB-Mat Problem and the 3D BB-Mat Algorithm
	The 3D BB-Mat Problem
	The 3D BB-Mat Algorithm

	The 3D CDT Problem and the 3D CDT Algorithm
	The 3D CDT Problem
	Compute the 3D CDT Problem By the 3D BB-Mat Problem
	The 3D CDT Algorithm

	The Experimental Results of the 3D CDT Problem
	Concluding Remarks
	References

	A General Approach to Predict the Performance Order of TSP Family Problems
	Introduction
	Methodology
	Extraction of Knowledge
	Prediction

	Traveling Salesman Problem
	Problem Statement
	TSP Algorithm Implementation

	Discovering the Significant Input Parameters
	First Hypothesis: Location of the Cities (Geographical Pattern)
	Second Hypothesis: Location of the Cities and Starting City (C1)
	Third Hypothesis: Sum of Distances and Mean Deviation of Sum of Distances
	Building a Multiple-Linear-Regression Model
	Evaluating the Regression Equation

	Conclusions

	Examining the Feasibility of Reconfigurable Models for Molecular Dynamics Simulation
	Introduction
	Background of Molecular Dynamics Simulation
	Molecular Dynamics Simulation
	Multigrid Method for Molecular Dynamics Simulation

	Reconfigurable Mesh and Proposed Algorithm
	Reconfigurable Mesh
	Proposed R-Mesh Algorithms

	Results and Analysis
	Conclusion
	References

	Parallel Simulated Annealing for Materialized View Selection in Data Warehousing Environments
	Introduction
	Materialized View Selection
	Running Example

	Multiple View Processing Plan (MVPP)
	Cost Model

	Parallel Simulated Annealing for Materialized View Selection
	Parallel Simulated Annealing Framework
	Solution Representation
	Parallel Simulated Annealing Parameters

	Experimental Evaluation
	Results

	Conclusion and Future Work

	An Operational Approach to Validate the Path of BGP
	Introduction
	Design of the Deployable Path Validation Authentication Scheme
	Building As-Path Table
	Checking Path Validation
	Incremental Deployment

	Evaluation
	Memory Overhead
	CPU Overhead

	Conclusion
	References

	1-Persistent Collision-Free CSMA Protocols for Opportunistic Optical Hyperchannels
	Introduction
	pi-Persistent CSMA Protocol in an Unidirectional Optical Bus
	System Model
	1-Persistent Collision-Free CSMA Protocols
	Timing Operation of the State Change
	Queuing Decisions for Received Packets
	Implementation of 1-Persistent Collision Free Protocol

	Performance Analysis
	Simulation
	Throughput and Global Average Delay
	Average Packet Delay

	Conclusion

	An Optimization of Context Sharing for Self-adaptive Mobile Applications
	Introduction
	Adaptation Enabling Middleware
	Problem Description and Requirements

	Adaptation Reasoning
	Developing Applications with Compositional Plans
	Adaptation Reasoning
	Optimizing the Adaptation Reasoning through Context Management

	Case Study Example and Experimental Evaluation
	Related Work
	Conclusions
	References

	A Network Service for DSP Multicomputers
	Introduction and Related Work
	Design Issues and Performance
	Conclusions
	References

	A Non-blocking Multithreaded Architecture with Support for Speculative Threads
	Introduction
	Related Research

	Scheduled Dataflow Architecture
	Thread-Level Speculation Schema for the SDF Architecture
	SDF Architecture Supported by the Schema
	States in Our Design
	Hardware Design of Our Schema
	States Transition Diagram
	Instruction Set Architecture Extension
	Experiment and Results

	Summary and Conclusions
	References

	Finding Synchronization-Free Parallelism Represented with Trees of Dependent Operations
	Introduction
	Background
	Motivating Example
	Extracting Synchronization-Free Trees
	Extracting Synchronization-Free Trees for the Motivating Example
	Another Example
	Experiments
	Related Work
	Conclusion and Future Work
	References

	Lee-TM: A Non-trivial Benchmark Suite for Transactional Memory
	Introduction
	TM and Non-trivial Benchmarks
	Lee's Routing Algorithm
	Lee-TM
	Sequential (Lee-TM-seq)
	Concurrent Implementations
	Verifier

	Workload Characterization
	Experimental Environment
	Sample Performance Evaluation
	Analysis of the Transactional Profile

	Related Work
	Summary

	Performance of OpenMP Benchmarks on Multicore Processors
	Introduction
	OpenMP Programming Model
	NAS Parallel Benchmark
	EPCC Microbenchmarks
	Experimental Results
	Conclusions

	Adaptive Loop Tiling for a Multi-cluster CMP
	Introduction
	JAMAICA Multi-cluster CMP Architecture
	Online Tuning Framework
	Adaptive Optimization Component
	Runtime Profiling and Overhead

	Experimental Methodology
	Results and Discussion
	Related Work
	Conclusion

	Quasi-opportunistic Supercomputing in Grid Environments
	Introduction
	The Challenges of Supercomputing over a Grid
	The Principles of Quasi-opportunistic Grids
	Infrastructure
	Quality of Service
	Co-allocation of Large Numbers of Resources
	Economics-Based Resource Allocation
	Fault Tolerance

	Initial Design
	End User Level
	Administrative Domain Level
	Grid Level
	Resource Description Model
	Life Cycle

	Preliminary Results
	Related Work
	Summary and Conclusions

	Explicit Control of Service Execution to Support QoS-Based Grid Scheduling
	Introduction
	Service Provider Architecture
	QoS-Based Service Scheduling
	A Two-Level Scheduling Policy

	Experimental Results
	Related Works and Conclusions

	Parallelization and Distribution Strategies of Large Bioinformatics Requests over the Grid
	Introduction
	Problem Description
	Dynamic Databases Redistribution and Job Scheduling
	Experiments
	Conclusion and Future Work

	Designing an Architecture for Distributed Shared Data on the Grid
	Introduction
	Abstract Model
	System Architecture Selection
	Conclusions
	References

	Grinda: A Tuple Space Service for the Globus Toolkit
	Introduction
	The Tuple Space Model
	Service Implementation
	Test Results
	Conclusion

	SuMo: A Framework for Prototyping Distributed and Mobile Software
	Introduction and Motivation
	The SuMo Framework
	The Network Layer
	The Node Layer
	The Site Layer

	Case Studies
	A Run-Time for the DiTyCO Language
	A Run-Time for the Mob Language

	Related Work
	Conclusions and Future Work

	A Debugger for Parallel Haskell Dialects
	Introduction
	Basic Hood
	Basic Ideas of the Parallel Implementation

	A Sample Haskell Dialect: The Eden Language
	Testing Speculation with Hood
	General Scheme to Analyze Speculation in Eden
	Dealing with Other Haskell Dialects

	Analyzing Speculation: A Case Study
	Conclusions

	Introducing Aspects to the Implementation of a Java Fork/Join Framework
	Introduction
	Background
	The Fork/Join Framework
	Applying Aspects
	InterfacesAspect Aspect
	StaticWarnings Aspect
	DynamicWarnings Aspect
	FJAspect Aspect

	Performance Evaluation
	Summary

	Analyzing Software Component Graphs of Grid Middleware: Hint to Performance Improvement
	Introduction
	Related Work
	Software Graphs
	Degree
	Betweenness

	Grid Middleware
	Result Analysis
	Degree Distribution
	Betweenness

	Conclusion
	References

	Using Multi-core to Support Security-Related Applications
	Outline
	Target Audience
	Bios of the Presenters

	Symbolic Analysis for Increased Program Execution Performance
	Author Index

